Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

New formulae for the Bernoulli and Euler polynomials at rational arguments


Authors: Djurdje Cvijović and Jacek Klinowski
Journal: Proc. Amer. Math. Soc. 123 (1995), 1527-1535
MSC: Primary 11M35; Secondary 11B68, 33E99
DOI: https://doi.org/10.1090/S0002-9939-1995-1283544-0
MathSciNet review: 1283544
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove theorems on the values of the Bernoulli polynomials ${B_n}(x)$ with $n = 2,3,4, \ldots$, and the Euler polynomials ${E_n}(x)$ with $n = 1,2,3, \ldots$ for $0 \leq x \leq 1$ where x is rational. ${B_n}(x)$ and ${E_n}(x)$ are expressible in terms of a finite combination of trigonometric functions and the Hurwitz zeta function $\zeta (z,\alpha )$. The well-known argument-addition formulae and reflection property of ${B_n}(x)$ and ${E_n}(x)$, extend this result to any rational argument. We also deduce new relations concerning the finite sums of the Hurwitz zeta function and sum some classical trigonometric series.


References [Enhancements On Off] (What's this?)

  • Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
  • A. Erdeley, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953. A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An index of mathematical tables (2nd ed.), Blackwell Scientific Publications, Oxford, England, 1962. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980. E. R. Hansen, A table of series and products, Prentice-Hall, Englewood Cliffs, NJ, 1975. C. Jordan, Calculus of finite differences, Chelsea, New York, 1947.
  • Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968
  • L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951. MR 0043339
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 3, Gordon and Breach Science Publishers, New York, 1990. More special functions; Translated from the Russian by G. G. Gould. MR 1054647
  • E. L. Stark, $\sum ^{\infty }_{k=1}K^{-s},$ $s=2,\,3,\,4\cdots $, once more, Math. Mag. 47 (1974), 197–202. MR 352775, DOI https://doi.org/10.2307/2689209

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11M35, 11B68, 33E99

Retrieve articles in all journals with MSC: 11M35, 11B68, 33E99


Additional Information

Keywords: Bernoulli polynomials, Euler polynomials, Hurwitz zeta function, summation of series
Article copyright: © Copyright 1995 American Mathematical Society