## The diameter conjecture for quasiconformal maps is true in space

HTML articles powered by AMS MathViewer

- by Juha Heinonen PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1709-1718 Request permission

## Abstract:

The diameter conjecture for quasiconformal maps is a natural generalization of the Hayman-Wu theorem on level sets of a univalent function. Astala, Fernández, and Rohde recently disproved this conjecture in the plane. Here we show it is true in space.## References

- K. Astala, J. L. Fernández, and S. Rohde,
*Quasilines and the Hayman-Wu theorem*, Indiana Univ. Math. J.**42**(1993), no. 4, 1077–1100. MR**1266085**, DOI 10.1512/iumj.1993.42.42050 - Christopher J. Bishop and Peter W. Jones,
*Harmonic measure and arclength*, Ann. of Math. (2)**132**(1990), no. 3, 511–547. MR**1078268**, DOI 10.2307/1971428 - José L. Fernández, Juha Heinonen, and Olli Martio,
*Quasilines and conformal mappings*, J. Analyse Math.**52**(1989), 117–132. MR**981499**, DOI 10.1007/BF02820475 - José L. Fernández and David H. Hamilton,
*Length of curves under conformal mappings*, Comment. Math. Helv.**62**(1987), no. 1, 122–134. MR**882968**, DOI 10.1007/BF02564441 - K. J. Falconer,
*The geometry of fractal sets*, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR**867284** - J. B. Garnett, F. W. Gehring, and P. W. Jones,
*Conformally invariant length sums*, Indiana Univ. Math. J.**32**(1983), no. 6, 809–829. MR**721565**, DOI 10.1512/iumj.1983.32.32055 - F. W. Gehring,
*Extension of quasiconformal mappings in three space*, J. Analyse Math.**14**(1965), 171–182. MR**179354**, DOI 10.1007/BF02806386 - F. W. Gehring and B. G. Osgood,
*Uniform domains and the quasihyperbolic metric*, J. Analyse Math.**36**(1979), 50–74 (1980). MR**581801**, DOI 10.1007/BF02798768 - F. W. Gehring and J. Väisälä,
*The coefficients of quasiconformality of domains in space*, Acta Math.**114**(1965), 1–70. MR**180674**, DOI 10.1007/BF02391817 - M. Ghamsari, R. Näkki, and J. Väisälä,
*John disks and extension of maps*, Monatsh. Math.**117**(1994), no. 1-2, 63–94. MR**1266774**, DOI 10.1007/BF01299312 - W. K. Hayman and J. M. G. Wu,
*Level sets of univalent functions*, Comment. Math. Helv.**56**(1981), no. 3, 366–403. MR**639358**, DOI 10.1007/BF02566219 - Juha Heinonen and Pekka Koskela,
*The boundary distortion of a quasiconformal mapping*, Pacific J. Math.**165**(1994), no. 1, 93–114. MR**1285566**, DOI 10.2140/pjm.1994.165.93 - Juha Heinonen and Raimo Näkki,
*Quasiconformal distortion on arcs*, J. Anal. Math.**63**(1994), 19–53. MR**1269214**, DOI 10.1007/BF03008418
J. Heinonen and J.-M. Wu, - M. H. A. Newman,
*Elements of the topology of plane sets of points*, Cambridge University Press, New York, 1961. Second edition, reprinted. MR**0132534** - Knut Øyma,
*Harmonic measure and conformal length*, Proc. Amer. Math. Soc.**115**(1992), no. 3, 687–689. MR**1101991**, DOI 10.1090/S0002-9939-1992-1101991-1 - Jussi Väisälä,
*Lectures on $n$-dimensional quasiconformal mappings*, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR**0454009**, DOI 10.1007/BFb0061216 - Jussi Väisälä,
*Bounded turning and quasiconformal maps*, Monatsh. Math.**111**(1991), no. 3, 233–244. MR**1111864**, DOI 10.1007/BF01294269 - Matti Vuorinen,
*Conformal geometry and quasiregular mappings*, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR**950174**, DOI 10.1007/BFb0077904 - Jang-Mei Wu,
*Boundary density and the Green function*, Michigan Math. J.**38**(1991), no. 2, 175–189. MR**1098855**, DOI 10.1307/mmj/1029004327

*Quasicircles, harmonic measure and*${A_\infty }$, Linear and Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., vol. 1574, Springer-Verlag, pp. 416-419.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1709-1718 - MSC: Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9939-1995-1234626-0
- MathSciNet review: 1234626