A note on Morita equivalence of twisted $C^ *$-dynamical systems
HTML articles powered by AMS MathViewer
- by S. Kaliszewski
- Proc. Amer. Math. Soc. 123 (1995), 1737-1740
- DOI: https://doi.org/10.1090/S0002-9939-1995-1239797-8
- PDF | Request permission
Abstract:
We present an elementary proof that every twisted ${C^ \ast }$-dynamical system is Morita equivalent to an ordinary system. As a corollary we prove the equivalence ${C_0}(G/H,A){ \times _{\tilde \alpha ,\tilde u}}G \sim A{ \times _{\alpha ,u}}H$ for Busby-Smith twisted dynamical systems, generalizing an important result of Green.References
- Huu Hung Bui, Morita equivalence of twisted crossed products, Proc. Amer. Math. Soc. 123 (1995), no.ย 9, 2771โ2776. MR 1260162, DOI 10.1090/S0002-9939-1995-1260162-1
- Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503โ537. MR 264418, DOI 10.1090/S0002-9947-1970-0264418-8
- F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), no.ย 2, 289โ306. MR 748991, DOI 10.1112/plms/s3-49.2.289
- Raรบl E. Curto, Paul S. Muhly, and Dana P. Williams, Cross products of strongly Morita equivalent $C^{\ast }$-algebras, Proc. Amer. Math. Soc. 90 (1984), no.ย 4, 528โ530. MR 733400, DOI 10.1090/S0002-9939-1984-0733400-1
- Siegfried Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization trick, J. London Math. Soc. (2) 50 (1994), no.ย 1, 170โ186. MR 1277761, DOI 10.1112/jlms/50.1.170
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no.ย 3-4, 191โ250. MR 493349, DOI 10.1007/BF02392308
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no.ย 1, 1โ33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no.ย 2, 293โ311. MR 1002543, DOI 10.1017/S0305004100078129
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras. II, Math. Ann. 287 (1990), no.ย 4, 595โ612. MR 1066817, DOI 10.1007/BF01446916
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176โ257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
- Marc A. Rieffel, Morita equivalence for operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp.ย 285โ298. MR 679708
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1737-1740
- MSC: Primary 46L55; Secondary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1239797-8
- MathSciNet review: 1239797