Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Morita equivalence of twisted $C^ *$-dynamical systems


Author: S. Kaliszewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 1737-1740
MSC: Primary 46L55; Secondary 46L05
DOI: https://doi.org/10.1090/S0002-9939-1995-1239797-8
MathSciNet review: 1239797
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary proof that every twisted ${C^ \ast }$-dynamical system is Morita equivalent to an ordinary system. As a corollary we prove the equivalence ${C_0}(G/H,A){ \times _{\tilde \alpha ,\tilde u}}G \sim A{ \times _{\alpha ,u}}H$ for Busby-Smith twisted dynamical systems, generalizing an important result of Green.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46L05

Retrieve articles in all journals with MSC: 46L55, 46L05


Additional Information

Keywords: <!– MATH ${C^ \ast }$ –> <IMG WIDTH="31" HEIGHT="19" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${C^ \ast }$">-algebra, dynamical system, Morita equivalence
Article copyright: © Copyright 1995 American Mathematical Society