Invariant subspaces for positive operators acting on a Banach space with basis
HTML articles powered by AMS MathViewer
- by Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw
- Proc. Amer. Math. Soc. 123 (1995), 1773-1777
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242069-9
- PDF | Request permission
Abstract:
Recently we established several invariant subspace theorems for operators acting on an ${l_p}$-space. In this note we extend these results from operators acting on an ${l_p}$-space to operators acting on any Banach space with a (not necessarily unconditional) Schauder basis. For instance, it is shown that if a continuous quasinilpotent operator on a Banach space is positive with respect to the closed cone generated by a basis, then the operator has a nontrivial closed invariant subspace.References
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Positive operators on Kreĭn spaces, Acta Appl. Math. 27 (1992), no. 1-2, 1–22. Positive operators and semigroups on Banach lattices (Curaçao, 1990). MR 1184872, DOI 10.1007/BF00046631
- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces of operators on $l_p$-spaces, J. Funct. Anal. 115 (1993), no. 2, 418–424. MR 1234398, DOI 10.1006/jfan.1993.1097
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399, DOI 10.1007/978-3-642-51633-7
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1773-1777
- MSC: Primary 47A15; Secondary 47B65
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242069-9
- MathSciNet review: 1242069