Portraits of frames
HTML articles powered by AMS MathViewer
- by Akram Aldroubi
- Proc. Amer. Math. Soc. 123 (1995), 1661-1668
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242070-5
- PDF | Request permission
Abstract:
We introduce two methods for generating frames of a Hilbert space $\mathcal {H}$. The first method uses bounded operators on $\mathcal {H}$. The other method uses bounded linear operators on ${l_2}$ to generate frames of $\mathcal {H}$. We characterize all the mappings that transform frames into other frames. We also show how to construct all frames of a given Hilbert space $\mathcal {H}$, starting from any given one. We illustrate the results by giving some examples from multiresolution and wavelet theory.References
- Akram Aldroubi and Michael Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 1–21. MR 1261594, DOI 10.1080/01630569408816545 —, Families of wavelet transforms in connection with Shannon’s sampling theory and the Gabor transform, Wavelets—A Tutorial in Theory and Applications, 2 (C. K. Chui, ed.), Academic Press, New York, 1992, pp. 509-528.
- Akram Aldroubi and Michael Unser, Families of multiresolution and wavelet spaces with optimal properties, Numer. Funct. Anal. Optim. 14 (1993), no. 5-6, 417–446. MR 1248121, DOI 10.1080/01630569308816532
- Akram Aldroubi, Murray Eden, and Michael Unser, Discrete spline filters for multiresolutions and wavelets of $l_2$, SIAM J. Math. Anal. 25 (1994), no. 5, 1412–1432. MR 1289146, DOI 10.1137/S0036141092234086
- John J. Benedetto, Gabor representations and wavelets, Commutative harmonic analysis (Canton, NY, 1987) Contemp. Math., vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 9–27. MR 1002584, DOI 10.1090/conm/091/1002584
- John J. Benedetto, Irregular sampling and frames, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 445–507. MR 1161260 J. J. Benedetto and S. Li, Multiresolution analysis frames with applications, IEEE-ICASSP 3 (1993), 304-307.
- Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. MR 1066587, DOI 10.1109/18.57199
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 47179, DOI 10.1090/S0002-9947-1952-0047179-6
- Christopher E. Heil and David F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628–666. MR 1025485, DOI 10.1137/1031129
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5 —, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. PAMI-11 (1989), 674-693.
- Wim Sweldens and Robert Piessens, Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions, SIAM J. Numer. Anal. 31 (1994), no. 4, 1240–1264. MR 1286226, DOI 10.1137/0731065
- Akram Aldroubi and Michael Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 1–21. MR 1261594, DOI 10.1080/01630569408816545
- Michael Unser, Akram Aldroubi, and Murray Eden, On the asymptotic convergence of $B$-spline wavelets to Gabor functions, IEEE Trans. Inform. Theory 38 (1992), no. 2, 864–872. MR 1162223, DOI 10.1109/18.119742 —, A family of polynomial spline wavelet transforms, Signal Process. 30 (1993), 141-162. M. Vetterli and C. Herley, Wavelets and filter banks, IEEE Trans. Signal Proc. 40 (1992), 2207-2231.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1661-1668
- MSC: Primary 46C05; Secondary 42C15
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242070-5
- MathSciNet review: 1242070