On the cofinality of the smallest covering of the real line by meager sets. II
HTML articles powered by AMS MathViewer
- by Tomek Bartoszyński and Haim Judah
- Proc. Amer. Math. Soc. 123 (1995), 1879-1885
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242073-0
- PDF | Request permission
Abstract:
We study the ideal of meager sets and related ideals.References
- Tomek Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), no. 1, 209–213. MR 719666, DOI 10.1090/S0002-9947-1984-0719666-7
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295, DOI 10.1201/9781439863466 —, Borel images of sets of reals, Real Anal. Exchange (submitted).
- Tomek Bartoszyński and Jaime I. Ihoda, On the cofinality of the smallest covering of the real line by meager sets, J. Symbolic Logic 54 (1989), no. 3, 828–832. MR 1011171, DOI 10.2307/2274744 David H. Fremlin, The partial orderings in measure theory and Tukey ordering, Note Mat. (to appear).
- Haim Judah and Saharon Shelah, $\textrm {MA}(\sigma$-centered): Cohen reals, strong measure zero sets and strongly meager sets, Israel J. Math. 68 (1989), no. 1, 1–17. MR 1035877, DOI 10.1007/BF02764965
- Arnold W. Miller and David H. Fremlin, On some properties of Hurewicz, Menger, and Rothberger, Fund. Math. 129 (1988), no. 1, 17–33. MR 954892, DOI 10.4064/fm-129-1-17-33
- Janusz Pawlikowski, Every Sierpiński set is strongly meager, Arch. Math. Logic 35 (1996), no. 5-6, 281–285. MR 1420258, DOI 10.1007/s001530050045
- Ireneusz Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), no. 1, 43–54. MR 1271477, DOI 10.4064/fm-144-1-43-54
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1879-1885
- MSC: Primary 04A15; Secondary 04A20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242073-0
- MathSciNet review: 1242073