On the multiple points of certain meromorphic functions
Author:
J. K. Langley
Journal:
Proc. Amer. Math. Soc. 123 (1995), 1787-1795
MSC:
Primary 30D35
DOI:
https://doi.org/10.1090/S0002-9939-1995-1242092-4
MathSciNet review:
1242092
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that if f is transcendental and meromorphic in the plane and $T(r,f) = o{(\log r)^2}$, then f has infinitely many critical values. This is sharp. Further, we apply a result of Eremenko to show that if f is meromorphic of finite lower order in the plane and $N(r,1/ff'') = o(T(r,f’ /f))$, then $f(z) = \exp (az + b)$ or $f(z) = {(az + b)^{ - n}}$ with a and b constants and n a positive integer.
- Steven B. Bank and Robert P. Kaufman, On meromorphic solutions of first-order differential equations, Comment. Math. Helv. 51 (1976), no. 3, 289–299. MR 430370, DOI https://doi.org/10.1007/BF02568158
- Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI https://doi.org/10.4171/RMI/176
- J. Clunie, A. Erëmenko, and J. Rossi, On equilibrium points of logarithmic and Newtonian potentials, J. London Math. Soc. (2) 47 (1993), no. 2, 309–320. MR 1207951, DOI https://doi.org/10.1112/jlms/s2-47.2.309
- Albert Edrei and Wolfgang H. J. Fuchs, Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. (3) 12 (1962), 315–344. MR 138765, DOI https://doi.org/10.1112/plms/s3-12.1.315
- A. Erëmenko, Meromorphic functions with small ramification, Indiana Univ. Math. J. 42 (1993), no. 4, 1193–1218. MR 1266090, DOI https://doi.org/10.1512/iumj.1993.42.42055
- Alexandre Eremenko, Jim Langley, and John Rossi, On the zeros of meromorphic functions of the form $f(z)=\sum ^\infty _{k=1}a_k/(z-z_k)$, J. Anal. Math. 62 (1994), 271–286. MR 1269209, DOI https://doi.org/10.1007/BF02835958
- Günter Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), no. 1, 29–36 (German). MR 422615, DOI https://doi.org/10.1007/BF01301627
- Günter Frank and Simon Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), no. 3, 407–428. MR 868452, DOI https://doi.org/10.1112/plms/s3-53.3.407
- Günter Frank, Wilhelm Hennekemper, and Gisela Polloczek, Über die Nullstellen meromorpher Funktionen und deren Ableitungen, Math. Ann. 225 (1977), no. 2, 145–154. MR 430250, DOI https://doi.org/10.1007/BF01351718
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9–42. MR 110807, DOI https://doi.org/10.2307/1969890
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967. MR 0217268
- Ilpo Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR 1207139
- J. K. Langley, Proof of a conjecture of Hayman concerning $f$ and $f”$, J. London Math. Soc. (2) 48 (1993), no. 3, 500–514. MR 1241784, DOI https://doi.org/10.1112/jlms/s2-48.3.500 ---, On second order linear differential polynomials, Resultate Math. 26 (1994), 51-514.
- J. Miles and J. Rossi, Linear combinations of logarithmic derivatives of entire functions with applications to differential equations, Pacific J. Math. 174 (1996), no. 1, 195–214. MR 1398375
- Erwin Mues, Über eine Vermutung von Hayman, Math. Z. 119 (1971), 11–20 (German). MR 276471, DOI https://doi.org/10.1007/BF01110938
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
- Daniel F. Shea, On the frequency of multiple values of a meromorphic function of small order, Michigan Math. J. 32 (1985), no. 1, 109–116. MR 777306, DOI https://doi.org/10.1307/mmj/1029003137
- Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D35
Retrieve articles in all journals with MSC: 30D35
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society