Isomorphisms of standard operator algebras
HTML articles powered by AMS MathViewer
- by Peter Šemrl
- Proc. Amer. Math. Soc. 123 (1995), 1851-1855
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242104-8
- PDF | Request permission
Abstract:
Let X and Y be Banach spaces, $\dim X = \infty$, and let $\mathcal {A}$ and $\mathcal {B}$ be standard operator algebras on X and Y, respectively. Assume that $\phi :\mathcal {A} \to \mathcal {B}$ is a bijective mapping satisfying $\left \| {\phi (AB) - \phi (A)\phi (B)} \right \| \leq \varepsilon ,A,B \in \mathcal {A}$, where $\varepsilon$ is a given positive real number (no linearity or continuity of $\phi$ is assumed). Then $\phi$ is a spatially implemented linear or conjugate linear algebra isomorphism. In particular, $\phi$ is continuous.References
- J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge, 1989. With applications to mathematics, information theory and to the natural and social sciences. MR 1004465, DOI 10.1017/CBO9781139086578
- John A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411–416. MR 580995, DOI 10.1090/S0002-9939-1980-0580995-3
- D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397. MR 31194, DOI 10.1215/S0012-7094-49-01639-7
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 0350442, DOI 10.1016/0022-1236(73)90080-3
- D. H. Hyers, The stability of homomorphisms and related topics, Global analysis–analysis on manifolds, Teubner-Texte Math., vol. 57, Teubner, Leipzig, 1983, pp. 140–153. MR 730609
- Irving Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374–381. MR 62960, DOI 10.4153/cjm-1954-036-5
- Irving Kaplansky, Algebraic and analytic aspects of operator algebras, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 1, American Mathematical Society, Providence, R.I., 1970. MR 0312283, DOI 10.1090/cbms/001
- Wallace S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695–698. MR 240129, DOI 10.1090/S0002-9939-1969-0240129-7
- C. E. Rickart, Representations of certain Banach algebras on Hilbert space, Duke Math. J. 18 (1951), 27–39. MR 50807, DOI 10.1215/S0012-7094-51-01804-2
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1851-1855
- MSC: Primary 47D30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242104-8
- MathSciNet review: 1242104