Krull dimension of modules and involutive ideals
HTML articles powered by AMS MathViewer
- by S. C. Coutinho
- Proc. Amer. Math. Soc. 123 (1995), 1647-1654
- DOI: https://doi.org/10.1090/S0002-9939-1995-1243163-9
- PDF | Request permission
Abstract:
In this paper we establish an upper bound for the Krull dimension of a module over a Weyl algebra in terms of a geometrical invariant of its characteristic variety, the involutive dimension. This is followed by some examples which show that this inequality may be strict.References
- Joseph Bernstein and Valery Lunts, On nonholonomic irreducible $D$-modules, Invent. Math. 94 (1988), no. 2, 223–243. MR 958832, DOI 10.1007/BF01394325
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- Ofer Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), no. 3, 445–468. MR 618321, DOI 10.2307/2374101
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
- Valery Lunts, Algebraic varieties preserved by generic flows, Duke Math. J. 58 (1989), no. 3, 531–554. MR 1016433, DOI 10.1215/S0012-7094-89-05824-9
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- J. T. Stafford, Nonholonomic modules over Weyl algebras and enveloping algebras, Invent. Math. 79 (1985), no. 3, 619–638. MR 782240, DOI 10.1007/BF01388528
- Pierre Schapira, Microdifferential systems in the complex domain, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 269, Springer-Verlag, Berlin, 1985. MR 774228, DOI 10.1007/978-3-642-61665-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1647-1654
- MSC: Primary 16S32; Secondary 16P90
- DOI: https://doi.org/10.1090/S0002-9939-1995-1243163-9
- MathSciNet review: 1243163