Approximating topological metrics by Riemannian metrics
HTML articles powered by AMS MathViewer
- by Steven C. Ferry and Boris L. Okun
- Proc. Amer. Math. Soc. 123 (1995), 1865-1872
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246524-7
- PDF | Request permission
Abstract:
We study the relation between (topological) inner metrics and Riemannian metrics on smoothable manifolds. We show that inner metrics on smoothable manifolds can be approximated by Riemannian metrics. More generally, if $f:M \to X$ is a continuous surjection from a smooth manifold to a compact metric space with ${f^{ - 1}}(x)$ connected for every $x \in X$, then there is a metric d on X and a sequence of Riemannian metrics $\{ {\psi _i}\}$ on M so that $(M,{\psi _i})$ converges to (X, d) in Gromov-Hausdorff space. This is used to obtain a (fixed) contractibility function $\rho$ and a sequence of Riemannian manifolds with $\rho$ as contractibility function so that $\lim (M,{\psi _i})$ is infinite dimensional. Using results of Dranishnikov and Ferry, this also gives examples of nonhomeomorphic manifolds M and N and a contractibility function $\rho$ so that for every $\varepsilon > 0$ there are Riemannian metrics ${\phi _\varepsilon }$ and ${\psi _\varepsilon }$ on M and N so that $(M,{\phi _\varepsilon })$ and $(N,{\psi _\varepsilon })$ have contractibility function $\rho$ and ${d_{GH}}((M,{\phi _\varepsilon }),(N,{\psi _\varepsilon })) < \varepsilon$.References
- Mladen Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no.Β 380, vi+110. MR 920964, DOI 10.1090/memo/0380
- R. H. Bing, Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), 536β556. MR 49550, DOI 10.1090/S0002-9904-1952-09621-X
- Mark Cassorla, Approximating compact inner metric spaces by surfaces, Indiana Univ. Math. J. 41 (1992), no.Β 2, 505β513. MR 1183356, DOI 10.1512/iumj.1992.41.41029
- A. N. Dranishnikov, On resolutions of $\textrm {LC}^n$-compacta, Geometric topology and shape theory (Dubrovnik, 1986) Lecture Notes in Math., vol. 1283, Springer, Berlin, 1987, pp.Β 48β59. MR 922271, DOI 10.1007/BFb0081418 A. N. Dranishnikov and S. C. Ferry, Cell-like images of topological manifolds and limits of manifolds in Gromov-Hausdorff space, preprint.
- A. N. Dranishnikov, Steven C. Ferry, and Shmuel Weinberger, Large Riemannian manifolds which are flexible, Ann. of Math. (2) 157 (2003), no.Β 3, 919β938. MR 1983785, DOI 10.4007/annals.2003.157.919
- Jerzy Dydak and John J. Walsh, Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture, Topology 32 (1993), no.Β 1, 93β104. MR 1204409, DOI 10.1016/0040-9383(93)90040-3
- Steven C. Ferry, Constructing $UV^k$-maps between spheres, Proc. Amer. Math. Soc. 120 (1994), no.Β 1, 329β332. MR 1166355, DOI 10.1090/S0002-9939-1994-1166355-5
- M. Gromov, Large Riemannian manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp.Β 108β121. MR 859578, DOI 10.1007/BFb0075649
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no.Β 4, 495β552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8 T. Moore, Gromov-Hausdorff convergence to non-manifolds, J. Geometric Anal. (to appear).
- Peter Petersen V, A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990), no.Β 2, 387β395. MR 1037407
- Stephen Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604β610. MR 87106, DOI 10.1090/S0002-9939-1957-0087106-9
- John J. Walsh, Isotoping mappings to open mappings, Trans. Amer. Math. Soc. 250 (1979), 121β145. MR 530046, DOI 10.1090/S0002-9947-1979-0530046-8
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1865-1872
- MSC: Primary 53C23; Secondary 57N60, 57R12
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246524-7
- MathSciNet review: 1246524