## Approximating topological metrics by Riemannian metrics

HTML articles powered by AMS MathViewer

- by Steven C. Ferry and Boris L. Okun PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1865-1872 Request permission

## Abstract:

We study the relation between (topological) inner metrics and Riemannian metrics on smoothable manifolds. We show that inner metrics on smoothable manifolds can be approximated by Riemannian metrics. More generally, if $f:M \to X$ is a continuous surjection from a smooth manifold to a compact metric space with ${f^{ - 1}}(x)$ connected for every $x \in X$, then there is a metric*d*on

*X*and a sequence of Riemannian metrics $\{ {\psi _i}\}$ on

*M*so that $(M,{\psi _i})$ converges to (

*X, d*) in Gromov-Hausdorff space. This is used to obtain a (fixed) contractibility function $\rho$ and a sequence of Riemannian manifolds with $\rho$ as contractibility function so that $\lim (M,{\psi _i})$ is infinite dimensional. Using results of Dranishnikov and Ferry, this also gives examples of nonhomeomorphic manifolds

*M*and

*N*and a contractibility function $\rho$ so that for every $\varepsilon > 0$ there are Riemannian metrics ${\phi _\varepsilon }$ and ${\psi _\varepsilon }$ on

*M*and

*N*so that $(M,{\phi _\varepsilon })$ and $(N,{\psi _\varepsilon })$ have contractibility function $\rho$ and ${d_{GH}}((M,{\phi _\varepsilon }),(N,{\psi _\varepsilon })) < \varepsilon$.

## References

- Mladen Bestvina,
*Characterizing $k$-dimensional universal Menger compacta*, Mem. Amer. Math. Soc.**71**(1988), no.Β 380, vi+110. MR**920964**, DOI 10.1090/memo/0380 - R. H. Bing,
*Partitioning continuous curves*, Bull. Amer. Math. Soc.**58**(1952), 536β556. MR**49550**, DOI 10.1090/S0002-9904-1952-09621-X - Mark Cassorla,
*Approximating compact inner metric spaces by surfaces*, Indiana Univ. Math. J.**41**(1992), no.Β 2, 505β513. MR**1183356**, DOI 10.1512/iumj.1992.41.41029 - A. N. Dranishnikov,
*On resolutions of $\textrm {LC}^n$-compacta*, Geometric topology and shape theory (Dubrovnik, 1986) Lecture Notes in Math., vol. 1283, Springer, Berlin, 1987, pp.Β 48β59. MR**922271**, DOI 10.1007/BFb0081418
A. N. Dranishnikov and S. C. Ferry, - A. N. Dranishnikov, Steven C. Ferry, and Shmuel Weinberger,
*Large Riemannian manifolds which are flexible*, Ann. of Math. (2)**157**(2003), no.Β 3, 919β938. MR**1983785**, DOI 10.4007/annals.2003.157.919 - Jerzy Dydak and John J. Walsh,
*Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture*, Topology**32**(1993), no.Β 1, 93β104. MR**1204409**, DOI 10.1016/0040-9383(93)90040-3 - Steven C. Ferry,
*Constructing $UV^k$-maps between spheres*, Proc. Amer. Math. Soc.**120**(1994), no.Β 1, 329β332. MR**1166355**, DOI 10.1090/S0002-9939-1994-1166355-5 - M. Gromov,
*Large Riemannian manifolds*, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp.Β 108β121. MR**859578**, DOI 10.1007/BFb0075649 - Robion C. Kirby and Laurence C. Siebenmann,
*Foundational essays on topological manifolds, smoothings, and triangulations*, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR**0645390**, DOI 10.1515/9781400881505 - R. C. Lacher,
*Cell-like mappings and their generalizations*, Bull. Amer. Math. Soc.**83**(1977), no.Β 4, 495β552. MR**645403**, DOI 10.1090/S0002-9904-1977-14321-8
T. Moore, - Peter Petersen V,
*A finiteness theorem for metric spaces*, J. Differential Geom.**31**(1990), no.Β 2, 387β395. MR**1037407** - Stephen Smale,
*A Vietoris mapping theorem for homotopy*, Proc. Amer. Math. Soc.**8**(1957), 604β610. MR**87106**, DOI 10.1090/S0002-9939-1957-0087106-9 - John J. Walsh,
*Isotoping mappings to open mappings*, Trans. Amer. Math. Soc.**250**(1979), 121β145. MR**530046**, DOI 10.1090/S0002-9947-1979-0530046-8

*Cell-like images of topological manifolds and limits of manifolds in Gromov-Hausdorff space*, preprint.

*Gromov-Hausdorff convergence to non-manifolds*, J. Geometric Anal. (to appear).

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1865-1872 - MSC: Primary 53C23; Secondary 57N60, 57R12
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246524-7
- MathSciNet review: 1246524