Free involutions on $E_ {4m}$ lattices
HTML articles powered by AMS MathViewer
- by Wojtek Jastrzebowski
- Proc. Amer. Math. Soc. 123 (1995), 1941-1945
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254844-5
- PDF | Request permission
Abstract:
We determine all the conjugacy classes of traceless involutions on the ${E_{4m}}$ lattices. In particular, we show that for every $m > 2$ there exist precisely two nonconjugate involutions which induce free ${\mathbf {Z}}[{{\mathbf {Z}}_2}]$-module structures. By inspecting the parity of the ${E_{4m}}$ form twisted by any such involution, we deduce that a closed, simply connected, topological 4-manifold with intersection form ${E_{4m}}$ supports a locally linear involution if and only if m is odd and the Kirby-Siebenmann invariant of the manifold is trivial.References
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056, DOI 10.4310/jdg/1214437665 —, The orientation of Yang-Mills moduli spaces and four manifold topology, J. Differential Geom. 17 (1987), 397-428.
- Allan L. Edmonds, Involutions on odd four-manifolds, Topology Appl. 30 (1988), no. 1, 43–49. MR 964061, DOI 10.1016/0166-8641(88)90079-X
- Allan L. Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989), no. 2, 109–124. MR 994404, DOI 10.1016/0166-8641(89)90075-8
- Allan L. Edmonds and John H. Ewing, Realizing forms and fixed point data in dimension four, Amer. J. Math. 114 (1992), no. 5, 1103–1126. MR 1183533, DOI 10.2307/2374891
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066 W. Jastrzebowski, The Slang programming language, 1987-1993.
- Sławomir Kwasik and Pierre Vogel, Asymmetric four-dimensional manifolds, Duke Math. J. 53 (1986), no. 3, 759–764. MR 860670, DOI 10.1215/S0012-7094-86-05341-X
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
- V. A. Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221–224 (Russian). MR 0052101
- Jean-Pierre Serre, Complex semisimple Lie algebras, Springer-Verlag, New York, 1987. Translated from the French by G. A. Jones. MR 914496, DOI 10.1007/978-1-4757-3910-7
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1941-1945
- MSC: Primary 57N13; Secondary 11H06
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254844-5
- MathSciNet review: 1254844