Mayer-Vietoris formula for the determinant of a Laplace operator on an even-dimensional manifold
HTML articles powered by AMS MathViewer
- by Yoonweon Lee
- Proc. Amer. Math. Soc. 123 (1995), 1933-1940
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254845-7
- PDF | Request permission
Abstract:
Let $\Delta$ be a Laplace operator acting on differential p-forms on an even-dimensional manifold M. Let $\Gamma$ be a submanifold of codimension 1. We show that if B is a Dirichlet boundary condition and R is a Dirichlet-Neumann operator on $\Gamma$, then ${\operatorname {Det}}(\Delta + \lambda ) = {\operatorname {Det}}(\Delta + \lambda ,B){\operatorname {Det}}(R + \lambda )$ and ${\operatorname {Det}^ \ast }\Delta = \frac {1}{{{{(\det A)}^2}}}{\operatorname {Det}}(\Delta ,B){\operatorname {Det}^ \ast }R$. This result was established in 1992 by Burghelea, Friedlander, and Rappeler for a 2-dimensional manifold with $p = 0$.References
- D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), no. 1, 34–65. MR 1165865, DOI 10.1016/0022-1236(92)90099-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1933-1940
- MSC: Primary 58G26
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254845-7
- MathSciNet review: 1254845