Dense sets of diagonalizable matrices
HTML articles powered by AMS MathViewer
- by D. J. Hartfiel
- Proc. Amer. Math. Soc. 123 (1995), 1669-1672
- DOI: https://doi.org/10.1090/S0002-9939-1995-1264813-7
- PDF | Request permission
Abstract:
This paper provides necessary and sufficient conditions for a subspace of matrices to contain a dense set of matrices having distinct eigenvalues. A well-known and useful result in linear algebra is that matrices with distinct eigenvalues are dense in the set of $n \times n$ matrices. This result, however, does not hold for subspaces of matrices in general. For example, the subspace \[ W = \left \{ {A:A = \left [ {\begin {array}{*{20}{c}} 0 \hfill & 0 \hfill \\ a \hfill & 0 \hfill \\ \end {array} } \right ]\quad {\text {where}}\;a \in R} \right \}\] contains no matrix with distinct eigenvalues. In this paper we give necessary and sufficient conditions for a subspace of matrices to contain a dense set of matrices having distinct eigenvalues. The result is then applied to subspaces of matrices determined by specified 0 patterns.References
- Joel N. Franklin, Matrix theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0237517
- D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, Proc. Amer. Math. Soc. 24 (1970), 388–393. MR 252415, DOI 10.1090/S0002-9939-1970-0252415-3
- D. J. Hartfiel, Tracking in matrix systems, Linear Algebra Appl. 165 (1992), 233–250. MR 1149757, DOI 10.1016/0024-3795(92)90240-B
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, Mass., 1964. MR 0162808 Herbert Simon and Albert Ando, Aggregation of variables in dynamic systems, Econometrica 29 (1961), 111-138.
- Richard Sinkhorn, Concerning a conjecture of Marshall Hall, Proc. Amer. Math. Soc. 21 (1969), 197–201. MR 241440, DOI 10.1090/S0002-9939-1969-0241440-6
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1669-1672
- MSC: Primary 15A18
- DOI: https://doi.org/10.1090/S0002-9939-1995-1264813-7
- MathSciNet review: 1264813