COMPOSITION OPERATORS BETWEEN HARDY AND WEIGHTED BERGMAN SPACES ON CONVEX DOMAINS IN C^N

BARBARA D. MACCLUER AND PETER R. MERCER

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Suppose Ω is a bounded, strongly convex domain in \mathbb{C}^N with smooth boundary and $\phi\colon\Omega\to\Omega$ is an arbitrary holomorphic map. While in general the composition operator C_ϕ need not map the Hardy space $H^p(\Omega)$ into itself when N>1, our main theorem shows that C_ϕ does map $H^p(\Omega)$ boundedly into a certain weighted Bergman space on Ω , where the weight function depends on the dimension N. We also consider properties of C_ϕ on $H^p(\Omega)$ when $\phi(\Omega)$ is contained in an approach region in Ω .

1. Introduction

For Ω a domain in \mathbb{C}^N and $\phi\colon\Omega-\Omega$ holomorphic, the composition operator C_ϕ with symbol ϕ is defined by $C_\phi(f)=f\circ\phi$, for f holomorphic on Ω . When Ω is the unit disc Δ in \mathbb{C} , it is well known that for every holomorphic $\phi\colon\Delta\to\Delta$, C_ϕ will be a bounded operator on the Hardy spaces $H^p(\Delta)$, for all p. However when Ω is the unit ball B_N , N>1, this is no longer the case; various examples have been given to show that C_ϕ may fail to be bounded on the Hardy spaces $H^p(B_N)$ $(0< p<\infty)$, and several authors $[\mathrm{CW}, \mathrm{M}, \mathrm{MS}, \mathrm{W}]$ have considered the problem of characterizing those ϕ for which C_ϕ is bounded on $H^p(B_N)$. A completely satisfactory answer to this question is not yet known.

Here we will consider more generally the case that Ω is a bounded, strongly convex domain in \mathbb{C}^N with smooth boundary. Our main result will show that for every holomorphic $\phi\colon \Omega \to \Omega$, C_ϕ is a bounded map of $H^p(\Omega)$ into the weighted Bergman space $A^{p\,,\,\alpha}(\Omega) \equiv \{f \text{ holomorphic}: \int_\Omega |f(z)|^p \, d\lambda_\Omega^\alpha(z) < \infty \}$, where $\alpha = N-2$ and $d\lambda_\Omega^\alpha(z) = (\operatorname{dist}(z\,,\,\partial\Omega))^\alpha\, d\lambda_\Omega(z)$ with $d\lambda_\Omega(z)$ normalized volume measure on Ω and $\operatorname{dist}(z\,,\,\partial(\Omega))$ the Euclidean distance from z to $\partial\Omega$. In particular, when $\Omega = B_N$, this says that every C_ϕ maps $H^p(B_N)$ boundedly into $A^{p\,,\,N-2}(B_N) = \{f \text{ holomorphic}: \int_{B_N} |f(z)|^p (1-|z|)^{N-2} \, d\lambda_B(z) \}$.

Received by the editors October 15, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B38; Secondary 32H02.

The first author's research was supported in part by a grant from the National Science Foundation.

The second author's research was supported in part by N.S.E.R.C. Canada.

We also consider compactness properties of $C_{\phi}\colon H^p(\Omega)\to H^p(\Omega)$ when $\phi(\Omega)$ is contained in an approach region at some $\zeta\in\partial\Omega$. Our result here generalizes a previously known result in the ball ([M, Theorem 2.2]) which showed that if $\phi(B_N)$ is contained in a Koranyi approach region of appropriately small aperture (depending on the dimension N), then C_{ϕ} is compact as an operator fron $H^p(B_N)$ to $H^p(B_N)$.

2. NOTATION AND BACKGROUND

In this section we fix our notation and collect some relevant background material. In all of what follows, $\Omega \subset \subset C^N$ will be a bounded strongly convex domain with C^∞ boundary, and B_N will be the unit ball in C^N , except that when N=1 we write instead Δ for the unit disc. Normalized surface area measure on $\partial\Omega$ and ∂B_N will be denoted by σ_Ω and σ_{B_N} (or just σ_B if the dimension need not be explicitly shown) respectively. Similarly λ_Ω , λ_B denote normalized volume measure on Ω and B_N . Recall that a holomorphic map from Δ to Ω is called an extremal map ([L1]), or complex geodesic ([V]) if it is an isometry with respect to the Kobayashi distances on Δ and Ω . For $z_0 \in \Omega$ and $x \in \partial\Omega$ there is a unique extremal map $\varphi_x \colon \overline{\Delta} \to \overline{\Omega}$ satisfying $\varphi_x(0) = z_0$ and $\varphi_x(1) = x$; φ_x is C^∞ on $\overline{\Delta}$ with $\varphi_x(\partial\Delta) \subset \partial\Omega$ ([L1, A]).

Associated with each such extremal map φ_x is a retraction p_x , which is a holomorphic map of Ω onto $\varphi_x(\Delta) \subset \Omega$ satisfying

$$p_x \circ \varphi_x(\lambda) = \varphi_x(\lambda) \quad \forall \lambda \in \Delta,$$

and

$$p_X \circ p_X = p_X$$

[L1, RW].

Note that in the ball B_N with $z_0 = 0$ we have $\varphi_X(\lambda) = \lambda x$ $(x \in \partial B_N, \lambda \in \Delta)$ and $p_X(z) = \langle z, x \rangle x$ $(z \in B_N)$, where \langle , \rangle denotes the usual inner product in \mathbb{C}^N

There is also, for each fixed direction $v \neq 0$ in \mathbb{C}^N and $z_0 \in \Omega$, a unique extremal map $\varphi_v : \overline{\Delta} \to \overline{\Omega}$, C^{∞} on $\partial \Delta$, satisfying

$$\varphi_v(0) = z_0,$$

$$\varphi_v'(0) = rv$$

with r>0 maximal [L1, RW]. From these extremal maps Lempert has constructed a canonical mapping $\Psi\colon \overline{B}_N\to \overline{\Omega}$ called the spherical representation of Ω , defined (for z_0 fixed in Ω) by

$$\Psi(0) = z_0,$$

$$\Psi(v) = \varphi_v(||v||), \qquad v \neq 0 \text{ in } \overline{B}_N.$$

It is easy to see that Ψ is holomorphic on slices through the origin. Moreover, Ψ is a homeomorphism between \overline{B}_N and $\overline{\Omega}$ which is a smooth diffeomorphism off any neighborhood of 0 (but including ∂B_N) [L1, Théorème 3; L3, Theorem 5.1]. Its inverse $\Psi^{-1} : \overline{\Omega} \to \overline{B}_N$ is given by

$$\Psi^{-1}(z) = \tanh k_{\Omega}(z_0, z) \frac{\varphi'_z(0)}{\|\varphi'_z(0)\|},$$

where k_{Ω} is the Kobayashi distance on Ω and $\tanh k_{\Omega}(z_0, z) = 1$ if $z \in \partial \Omega$. Moreover, $\varphi_x(re^{i\theta}) = \Psi(re^{i\theta}\Psi^{-1}(x))$ for $r \in [0, 1]$, θ real, and $x \in \partial \Omega$ ([A]). The reader may check that with $\Omega = B_N$ and $z_0 = 0$, Ψ is the identity.

The map Ψ allows us to prove a version of slice integration on $\partial\Omega$, generalizing Proposition 1.4.7(i) of [R] for the ball. This lemma will be used in §4.

Lemma 1. For integrable f on $\partial \Omega$

$$\int_{\partial\Omega} f \, d\sigma_{\Omega} \approx \int_{\partial\Omega} \int_{0}^{2\pi} f \circ \varphi_{x}(e^{i\theta}) \, d\theta \, d\sigma_{\Omega}(x) \,,$$

where \approx indicates that the ratio of the two quantities is bounded above and below by finite positive constants independent of f.

Proof. Fix $z_0 \in \Omega$ and let Ψ be the spherical representation of Ω . Use the fact that Ψ is a diffeomorphism between ∂B_N and $\partial \Omega$ together with slice integration in B_N to see that

$$\begin{split} \int_{\partial\Omega} f d\sigma_{\Omega} &= \int_{\partial B_{N}} f \circ \Psi d\sigma_{\Omega} \circ \Psi \approx \int_{\partial B_{N}} f \circ \Psi d\sigma_{B} \\ &= \frac{1}{2\pi} \int_{\partial B_{N}} \int_{0}^{2\pi} f \circ \Psi(e^{i\theta}\eta) \, d\theta \, d\sigma_{B}(\eta) \\ &= \frac{1}{2\pi} \int_{\partial\Omega} \int_{0}^{2\pi} f \circ \Psi(e^{i\theta}\Psi^{-1}(x)) \, d\theta \, d\sigma_{B} \circ \Psi^{-1}(x) \\ &\approx \int_{\partial\Omega} \int_{0}^{2\pi} f \circ \Psi(e^{i\theta}\Psi^{-1}(x)) \, d\theta \, d\sigma_{\Omega}(x) \\ &= \int_{\partial\Omega} \int_{0}^{2\pi} f \circ \varphi_{x}(e^{i\theta}) \, d\theta \, d\sigma_{\Omega}(x). \quad \Box \end{split}$$

The following lemma due to Lempert will play an essential role in our main theorems in §§3 and 4. Let $d_{\Omega}(z)$ be the Euclidean distance from z to $\partial \Omega$.

Lemma 2 [L1, Proposition 12]. Let $\varphi: \Delta \to \Omega$ be an extremal map. There exists a finite constant c depending only on $\varphi(0)$ so that

$$d_{\Omega}(\varphi(\lambda)) \leq c(1-|\lambda|)$$

for all $\lambda \in \Delta$.

3. Main theorem

For $0 the spaces <math>H^p(\Omega)$ are the usual holomorphic Hardy spaces on Ω ([S; K, Chapter 8]). For $\alpha \ge 0$ define the weighted Bergman space $A^{p,\alpha}(\Omega)$ to be those holomorphic f on Ω satisfying

$$||f||_{\alpha}^{p} \equiv \int_{\Omega} |f(z)|^{p} d_{\Omega}^{\alpha}(z) d\lambda_{\Omega}(z) < \infty,$$

where $d^{\alpha}_{\Omega}(z) = (\mathrm{dist}(z\,,\,\partial\Omega))^{\alpha}$. The weighted volume measure $d^{\alpha}_{\Omega}(z)\,d\lambda_{\Omega}(z)$ will be abbreviated as $d\lambda^{\alpha}_{\Omega}$. In the case $\Omega=B_N$ we have the standard weighted Bergman spaces.

Our first lemma is a quantitative formulation of the fact that in the disc every composition operator is bounded on the standard weighted Bergman spaces.

This result is well known (it is a consequence of Proposition 3.4 and Theorem 4.3 of [MS]); we include its proof for completeness. For $e^{i\theta} \in \partial \Delta$ and t > 0, $S(e^{i\theta}, t) = \{z \in \Delta : |1 - ze^{-i\theta}| < t\}$, and let α be non-negative.

Lemma 3. Let $\gamma: \Delta \to \Delta$ be holomorphic with $\gamma(0) = 0$. There exists an absolute constant C (independent of the particular choice of γ) so that

$$\lambda_{\Lambda}^{\alpha}(\gamma^{-1}(S(e^{i\theta}, t))) \leq Ct^{\alpha+2}$$

for all real θ and t > 0.

Proof. Littlewood's subordination principle shows that the operator C_{γ} is bounded on the weighted Bergman space $A^{p,\alpha}(\Delta)$, with the norm of $C_{\gamma}=1$. In particular, for all $f \in A^{2,\alpha}(\Delta)$ we have

$$\int_{\Lambda} |f \circ \gamma|^2 d\lambda_{\Delta}^{\alpha}(z) \le \int_{\Lambda} |f|^2 d\lambda_{\Delta}^{\alpha}(z)$$

or

$$\int_{\Lambda} |f|^2 d(\lambda_{\Delta}^{\alpha} \gamma^{-1}) \le \int_{\Lambda} |f|^2 d\lambda_{\Delta}^{\alpha}(z).$$

Apply this to the test functions

$$f_w = (1 - z\overline{w})^{-(\alpha+2)} \in A^{2,\alpha}(\Delta)$$

(which have norms in $A^{2,\alpha}(\Delta)$ comparable to $(1-|w|^2)^{-(\alpha+2)/2}$) for the choice $w=(1-t)e^{i\theta}$. Using the estimate

$$|f_w(z)|^2 \ge c_1 \frac{1}{(t^{\alpha+2})^2}$$
 on $S(e^{i\theta}, t)$

for some absolute constant c_1 we obtain

$$c_1 \frac{1}{t^{2(\alpha+2)}} \lambda_{\Delta}^{\alpha} \gamma^{-1}(S(e^{i\theta}, t)) \le c_2 \frac{1}{t^{\alpha+2}},$$

which gives the desired result.

Now we return to our map $\phi \colon \Omega \to \Omega$. Pick an arbitrary base point $z_0 \in \Omega$ and let $\phi(z_0) = w_0$. Fix $\zeta \in \partial \Omega$, and let $\varphi_{\zeta} \colon \Delta \to \Omega$ be the extremal map with $\varphi_{\zeta}(0) = w_0$ and $\varphi_{\zeta}(1) = \zeta$. Denote its associated retraction by p_{ζ} . For each $x \in \partial \Omega$ we consider the holomorphic self-map τ_x of the disc Δ defined by

$$\tau_x = \varphi_{\zeta}^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x \,,$$

where the extremal maps $\varphi_x : \Delta \to \Omega$ have $\varphi_x(0) = z_0$ and $\varphi_x(1) = x$. Notice that for each $x \in \partial \Omega$, $\tau_x(0) = 0$. Also define sets $S(\zeta, t)$ for t > 0 by

$$S(\zeta, t) = \{ z \in \Omega \colon |1 - \varphi_{r}^{-1} \circ p_{\zeta}(z)| < t \}.$$

In the special case $\Omega = B_N$, $z_0 = w_0 = 0$ the maps τ_x are just

$$\tau_X(\lambda) = \langle \phi(\lambda x), \zeta \rangle$$

and $S(\zeta, t) = \{z \in B_N: |1 - \langle z, \zeta \rangle| < t\}$, which is the usual definition of a Carleson set (based at ζ) in B_N and consistent with our previous use of the notation $S(e^{i\theta}, t)$ in Δ . We will see later that in general these sets $S(\zeta, t)$ are equivalent to the usual Carleson sets in Ω as defined by Hormander.

The next proposition uses the maps τ_x to estimate

$$\lambda_{\mathbf{\Omega}}^{\alpha}\phi^{-1}S(\zeta,t).$$

This estimate will be the key ingredient in the proof of our main theorem.

Proposition 4. There exists a finite constant C, independent of $\zeta \in \partial \Omega$ and t > 0, so that

$$\lambda_{\Omega}^{\alpha}\phi^{-1}S(\zeta,t)\leq Ct^{\alpha+2}.$$

In particular, when $\alpha = N - 2$, we have

$$\lambda_{\mathbf{O}}^{N-2}\phi^{-1}S(\zeta\,,\,t)=O(t^N)$$

for $\zeta \in \partial \Omega$, t > 0.

Proof. Clearly it is enough to show this for all $t < t_0$, where t_0 is an arbitrary positive number. Fix a neighborhood V of z_0 , $V \subset\subset \Omega$, and find $t_0 > 0$ so that $\phi^{-1}S(\zeta,t)\cap V$ is empty for all $\zeta\in\partial\Omega$ and $t< t_0$. Then find $\varepsilon>0$ so that if $\Psi\colon \overline{B_N}\to\overline{\Omega}$ is the spherical representation of Ω described in §2 (with $\Psi(0)=z_0$) we have $\Psi(B_\varepsilon)\subset V$, where B_ε is the ball of radius ε centered at 0.

Writing $\chi_{\phi^{-1}S}$ for the characteristic function of a set $\phi^{-1}S(\zeta, t)$ we have the following estimate for all $0 < t < t_0$:

$$\begin{split} \lambda_{\Omega}^{\alpha}\phi^{-1}S(\zeta\,,\,t) &= \int_{\Omega}\chi_{\phi^{-1}S}(w)d_{\Omega}^{\alpha}(w)\,d\lambda_{\Omega}(w) \\ &= \int_{\Omega\setminus V}\chi_{\phi^{-1}S}(w)\,d_{\Omega}^{\alpha}(w)\,d\lambda_{\Omega}(w) \\ &\leq c_1\int_{B\setminus B_r}\chi_{\phi^{-1}S}\circ\Psi(z)\,d_{\Omega}^{\alpha}(\Psi(z))\,d\lambda_{B}(z)\,, \end{split}$$

where c_1 is a constant independent of ζ and t, since Ψ is a diffeomorphism on $\overline{B_N \backslash B_\varepsilon}$. Changing to polar coordinates and using slice integration in the ball gives that this last integral is

$$c_{2} \int_{\varepsilon}^{1} r^{2N-1} \int_{\partial B} \int_{0}^{2\pi} \chi_{\phi^{-1}S} \circ \Psi(re^{i\theta}\eta) d^{\alpha}_{\Omega}(\Psi(re^{i\theta}\eta)) d\theta d\sigma_{B}(\eta) dr$$

$$= c_{2} \int_{\varepsilon}^{1} r^{2N-1} \int_{\partial \Omega} \int_{0}^{2\pi} \chi_{\phi^{-1}S} \circ \Psi(re^{i\theta}\Psi^{-1}(x))$$

$$\cdot d^{\alpha}_{\Omega}(\Psi(re^{i\theta}\Psi^{-1}(x)) d\theta d\sigma_{B} \circ \Psi^{-1}(x) dr$$

$$\leq c_{3} \int_{\varepsilon}^{1} r^{2N-1} \int_{\partial \Omega} \int_{0}^{2\pi} \chi_{\phi^{-1}S} \circ \Psi(re^{i\theta}\Psi^{-1}(x))$$

$$\cdot d^{\alpha}_{\Omega}(\Psi(re^{i\theta}\Psi^{-1}(x)) d\theta d\sigma_{\Omega}(x) dr,$$

again because Ψ is a diffeomorphism on ∂B_N . Since

$$\Psi(re^{i\theta}\Psi^{-1}(x)) = \varphi_x(re^{i\theta}),$$

the integrand in the inner integral of the last line is $\chi_{\phi^{-1}S}(\varphi_x(re^{i\theta}))\,d^{\alpha}_{\Omega}(\varphi_x(re^{i\theta}))$, which, by Lemma 2, is bounded above by a constant multiple of $\chi_{\phi^{-1}S}(\varphi_x(re^{i\theta}))$. (1-r)\(^{\alpha}\) (where we use the fact that $\varphi_x(0) = z_0$ for all $x \in \partial\Omega$). At this point we have

$$\begin{split} \lambda_{\Omega}^{\alpha}\phi^{-1}S(\zeta,t) &\leq c_{4} \int_{\varepsilon}^{1} r^{2N-1} \int_{\partial\Omega} \int_{0}^{2\pi} \chi_{\phi^{-1}S}(\varphi_{x}(re^{i\theta})) \, d\theta \, d\sigma_{\Omega}(x) (1-r)^{\alpha} \, dr \\ &\leq c_{4} \int_{\partial\Omega} \int_{\Delta} \chi_{\phi^{-1}S}\varphi_{x}(u) d\lambda_{\Delta}^{\alpha}(u) \, d\sigma_{\Omega}(x). \end{split}$$

Now

$$\chi_{\phi^{-1}S}\varphi_{x}(u) = 1 \Leftrightarrow \phi \circ \varphi_{x}(u) \in S(\zeta, t)$$

$$\Leftrightarrow |1 - \varphi_{\zeta}^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_{x}(u)| < t$$

$$\Leftrightarrow \tau_{x}(u) \in S(1, t).$$

Applying Lemma 3 gives

$$\lambda_{\Omega}^{\alpha}\phi^{-1}S(\zeta,t)\leq c_5t^{\alpha+2}$$
,

where c_5 depends on neither ζ nor t, and we are done. \square

To use this proposition to prove the main theorem we need to relate the sets $S(\zeta,t)$ to the Carleson sets defined by Hormander [H] (in the general setting of bounded strictly pseudoconvex domains with C^2 boundary). These sets, denoted $A(\zeta,t)$ for $\zeta\in\partial\Omega$ and t>0, are defined as follows: Let π_ζ be the complex tangent space at ζ , and let $A(\zeta,t)$ be all points in Ω whose distance to the ball in π_ζ with center ζ and radius \sqrt{t} is at most t. We claim that the sets $S(\zeta,t)$ and $A(\zeta,t)$ are comparable in the sense that there exist finite positive constants k_1,k_2 so that

$$A(\zeta, k_2 t) \subseteq S(\zeta, t) \subseteq A(\zeta, k_1 t).$$

To see this we make use of a special biholomorphic map of Ω to a domain Ω' which flattens out the image of the extremal disc $\varphi_{\zeta}(\Delta)$ in Ω . The existence of this biholomorphism and the relevant properties of it and the domain Ω' are contained in the following theorem.

Theroem 5 [L1, L2, L4]. Given a strongly convex domain $\Omega \subset \subset \mathbb{C}^N$ with C^{∞} boundary and an extremal map $\varphi \colon \Delta \to \Omega$ with associated retraction p, there exists a domain $\Omega' \subset \subset \mathbb{C}^N$ and a biholomorphism $\Lambda \colon \Omega \to \Omega'$ which is C^{∞} on $\overline{\Omega}$ such that:

- (i) $\Lambda \circ \varphi(\lambda) = (\lambda, 0') \ \forall \lambda \in \Delta$.
- (ii) $\Lambda \circ p = \pi \circ \Lambda$, where $\pi(z_1, z') = (z_1, 0')$.
- (iii) For each $\xi \in \partial \Delta$ we have $(\xi, 0') \in \partial \Omega'$ with the unit outward normal there $(\xi, 0')$.
- (iv) Ω' is strongly convex in a neighborhood of $\{(\xi, 0'): |\xi| = 1\}$.

Lemma 6. The sets $S(\zeta, t)$ and $A(\zeta, t)$ are comparable.

Proof. The sets $A(\zeta,t)$ are invariant under biholomorphic maps ([H, p. 73]), so it suffices to show that the sets $\Lambda(S(\zeta,t))$ and $A(\Lambda(\zeta),t)$ are comparable, where $\zeta \in \partial \Omega$. We use Theorem 5, with $\varphi_{\zeta} = \varphi$ and $p_{\zeta} = p$. By (i) and (ii) we have $\Lambda(S(\zeta,t)) = \{z \in \Omega' \colon |1-z_1| < t\}$. By (iii) and (iv) and the definition of $A(\zeta,t)$ there are constants $k_1,k_2 > 0$ such that

$$A(\Lambda(\zeta), k_2 t) \subset \Lambda(S(\zeta, t)) \subset A(\Lambda(\zeta), k_1 t) \quad (\forall t > 0).$$

Now the sets $\varphi_{\zeta}(\Delta)$ vary continuously with $\zeta \in \partial \Omega$ ([L1, Proposition 11; A, Lemma 1.9]), so we may assume that k_1 , k_2 are independent of ζ , and we are done. \square

Our main theorem is as follows.

Theorem 7. If Ω is a bounded, strongly convex domain in \mathbb{C}^N $(N \ge 2)$ with C^{∞} boundary, and if $\phi: \Omega \to \Omega$ is homomorphic, then C_{ϕ} maps $H^p(\Omega)$ boundedly into $A^{p,N-2}(\Omega)$, for each 0 .

Proof. We wish to show that there exists $C < \infty$ so that

$$\int_{\Omega} |f \circ \phi(z)|^p d\lambda_{\Omega}^{N-2}(z) \leq C \int_{\partial \Omega} |f|^p d\sigma_{\Omega},$$

whenever $f \in H^p(\Omega)$. By Hormander's Carleson measure theorem ([H, Theorem 4.3]) it suffices to show that there exists $C' < \infty$ satisfying

$$\lambda_0^{N-2}\phi^{-1}A(\zeta,t) \le C't^N$$

for all $\zeta \in \partial \Omega$, t > 0. Lemma 6 shows that we may replace $A(\zeta, t)$ in (*) by $S(\zeta, t)$, and then the result follows from Proposition 4. \square

4. Maps into admissible regions

In Theorem 2.2 of [M] it was shown that if the holomorphic map $\phi \colon B_N \to B_N$ has $\phi(B_N)$ contained in a Koranyi approach region of sufficiently small aperture (depending on the dimension N), then C_ϕ will be compact on $H^p(B_N)$; moreover, this result is sharp in a natural sense. In this section we give a theorem in the same spirit for holomorphic maps of a bounded strongly convex domain Ω with C^∞ boundary. As the ideas are similar to those in the last section we will omit some details of the arguments.

Analogous to Lemma 3 in §3 we begin with a one variable result, which considers maps which take Δ into a non-tangential approach region in Δ .

Lemma 8 [M, Lemma 2.3]. If $\gamma: \Delta \to \Delta$ is holomorphic with $\gamma(0) = 0$ and $\gamma(\Delta) \subseteq \{z \in \Delta: |1-z| < \alpha(1-|z|)\}$, then there exists $C < \infty$ depending only on α so that

$$\sigma_{\Delta}(\gamma^{-1}S(1, t)) \leq Ct^b$$
,

where $b = \frac{\pi}{2\cos^{-1}(1/\alpha)}$. In particular C_{γ} will be compact (for all $\alpha > 1$).

Recall that if we fix a base point z_0 in our strongly convex domain Ω and consider any extremal map $\varphi \colon \Delta \to \Omega$ with $\varphi(0) = z_0$, then Lemma 2 guarantees that $d_{\Omega}(\varphi(\lambda)) \leq c_1(1-|\lambda|)$ for all $\lambda \in \Delta$, where c_1 is a finite constant not depending on a particular map φ . By Theorem 5 there is a positive constant c_2 such that $d_{\Omega}(z) \leq c_2 d_{\Omega}(p(z))$ for every $z \in \Omega$, where p is the retraction associated with φ . Just as in the proof of Lemma 6, c_2 is independent of $\varphi(1)$. Thus

(4.1)
$$d_{\Omega}(z) \le c_1 c_2 (1 - |\varphi^{-1} \circ p(z)|)$$

for all z in Ω . For $\zeta \in \partial \Omega$, define approach regions $D_{\alpha}(\zeta)$ by

$$D_{\alpha}(\zeta) = \{ z \in \Omega \colon |1 - \varphi_{\zeta}^{-1} \circ p_{\zeta}(z)| < \alpha d_{\Omega}(z) \}.$$

Notice that by (4.1) $D_{\alpha}(\zeta)$ is empty for $\alpha < \frac{1}{C(\zeta)}$.

Theorem 9. Let Ω be a smooth, strongly convex bounded domain. There exist positive constants α_0 , α_1 (which depend on Ω , a chosen base point z_0 in Ω , and for α_1 explicitly on the dimension N) so that for each $\zeta \in \partial \Omega$ we have:

(1)
$$D_{\alpha}(\zeta)$$
 is empty for $\alpha < \alpha_0$.

- (2) If $\phi(\Omega) \subset D_{\alpha}(\zeta)$ for $\alpha_0 < \alpha < \alpha_1$, then C_{ϕ} is compact from $H^p(\Omega)$ to $H^p(\Omega)$, 0 .
- (3) If $\phi(\Omega) \subset D_{\alpha_1}(\zeta)$, then C_{ϕ} is bounded from $H^p(\Omega)$ to $H^p(\Omega)$, 0 .

Sketch of proof. We have already observed (1) holds when $\alpha_0 = \frac{1}{c_1c_2}$. By a recent theorem of Li and Russo [LR] and Lemma 6, C_{ϕ} is compact from $H^p(\Omega)$ to $H^p(\Omega)$ if

(4.2)
$$\sigma_{\Omega} \phi^{-1} \overline{S}(\eta, t) = o(t^N)$$

as $t\to 0$, uniformly in $\eta\in\partial\Omega$; and C_ϕ is bounded from $H^p(\Omega)$ to $H^p(\Omega)$ when

(4.3)
$$\sigma_{\Omega} \phi^{-1} \overline{S}(\eta, t) = O(t^{N}) \quad \forall t > 0, \, \eta \in \partial \Omega.$$

Thus (2) follows if $\alpha \in (\alpha_0, \alpha_1)$ and $\phi(\Omega) \subset D_{\alpha}(\zeta) \Rightarrow \sigma_{\Omega} \phi^{-1} \overline{S}(\eta, t) = o(t^N)$, and (3) follows if $\phi(\Omega) \subset D_{\alpha_1}(\zeta) \Rightarrow \sigma_{\Omega} \phi^{-1} \overline{S}(\eta, t) = O(t^N)$. Here we are identifying the map ϕ with its extension a.e. to $\partial \Omega$ along inner normal vectors ([K, Proposition 8.5.1]). This was also implicit in Lemma 8.

We first consider the process of estimating $\sigma_{\Omega}\phi^{-1}\overline{S}(\eta, t)$ when $\eta = \zeta$ and $\phi(\Omega) \subseteq D_{\alpha}(\zeta)$. Exactly as in the proof of Proposition 4 define maps $\tau_x : \Delta \to \Delta$ $(x \in \partial \Omega)$ by $\tau_x = \varphi_{\zeta}^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x$. We have $\tau_x(0) = 0$, and by hypothesis and (4.1),

$$|1 - \tau_x(\lambda)| \le c_1 c_2 \alpha (1 - |\varphi_{\zeta}^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x(\lambda)|)$$

which says $\tau_x(\Delta) \subseteq \{\lambda \in \Delta : |1 - \lambda| \le c_1 c_2 \alpha (1 - |\lambda|)\}$. By Lemma 8

$$\sigma_{\Delta} \tau_x^{-1} S(1, t) \leq C t^b$$
,

where C depends on $c_1c_2\alpha$ and $b = \pi/(2\cos^{-1}(\frac{1}{c_1c_2\alpha}))$. By Lemma 1,

$$\begin{split} \sigma_{\Omega}(\phi^{-1}(\overline{S}(\zeta\,,\,t)\cap\partial\Omega)&\equiv\sigma_{\Omega}(A)\\ &\leq c\int_{\partial\Omega}\int_{0}^{2\pi}\chi_{A}\circ\varphi_{x}(e^{i\theta})\,d\theta\,d\sigma_{\Omega}(x)\\ &< ct^{b}\,, \end{split}$$

since $\chi_A \circ \varphi_X(e^{i\theta}) = 1 \Leftrightarrow |1 - \tau_X(e^{i\theta})| \leq t$.

Now set $\alpha_1 = \frac{1}{c_1c_2}\sec\frac{\pi}{2N}$. If $\phi(\Omega) \subseteq D_{\alpha}(\zeta)$ where $\alpha < \alpha_1$, then b > N and the above calculation shows $\sigma_{\Omega}(\phi^{-1}\overline{S}(\zeta,t)\cap\partial\Omega) = o(t^N)$ while if $\phi(\Omega) \subseteq D_{\alpha_1}(\zeta)$ we have

$$\sigma_{\Omega}(\phi^{-1}\overline{S}(\zeta, t) \cap \partial\Omega) = O(t^N).$$

To obtain these same estimates for

$$\sigma_{\Omega}(\phi^{-1}\overline{S}(\eta, t) \cap \partial\Omega)$$

where $\eta \in \partial \Omega$ is arbitrary, we observe the following: there is a constant k_1 , independent of η and t, so that if $S(\eta, t) \cap D_{\alpha}(\zeta)$ is non-empty, then $S(\zeta, k_1 t) \supseteq S(\eta, t)$. To see this first notice that there is a constant k_2 (depending only on Ω) so that if $S(\eta, t)$ and $S(\zeta, t)$ intersect, then $S(\zeta, k_2 t) \supseteq S(\eta, t)$ (see, for example, [H, p. 73] where the analogous property is proved for the comparable

sets $A(\zeta, t)$. Now observe that if $z \in S(\eta, t) \cap D_{\alpha}(\zeta)$, then $z \in S(\zeta, k_3 \alpha t)$ for some constant k_3 and therefore $S(\eta, t) \subseteq S(\zeta, k_2 k_3 \alpha t) \equiv S(\zeta, k_1 t)$. Thus

$$\sigma_{\Omega}(\phi^{-1}\overline{S}(\eta, t) \cap \partial\Omega) \leq \sigma_{\Omega}(\phi^{-1}\overline{S}(\zeta, k_{1}t) \cap \partial\Omega)$$

$$\leq c(k_{1}t)^{b} = c't^{b},$$

with b as before, as desired. \square

In the case $\Omega = B_N$ and $z_0 = 0$ both c_1 and c_2 can be taken to be 1 and the regions $D_{\alpha}(\zeta)$ are the usual Koranyi approach regions in B:

$$D_{\alpha}(\zeta) = \{ z \in B \colon |1 - \langle z, \zeta \rangle| < \alpha(1 - |z|) \}.$$

In this setting Theorem 9 becomes exactly Theorem 2.2 of [M], with $\alpha_0 = 1$ and $\alpha_1 = \sec \frac{\pi}{2N}$.

We finish with some brief remarks on examples. Consider the map $\phi: B_N \to B_N$ defined by

$$\phi(z_1, z_2, \ldots, z_N) = (N^{\frac{N}{2}} z_1 z_2 \cdots z_N, 0').$$

A direct computation ([MS, p. 904]) shows that for t small

$$\lambda_B^{\alpha}(\phi^{-1}(S(e_1, t)) \simeq t^{\alpha + \frac{(N-1)}{2} + 2},$$

where $e_1 = (1, 0') \in \partial B_N$.

Thus in this example C_{ϕ} is not bounded from $H^p(B_N)$ to $A^{p,\alpha}(B_N)$ for any $\alpha < \frac{N-3}{2}$ (notice that the spaces $A^{p,\alpha}(B_N)$ may be defined for any $\alpha > -1$), whereas Theorem 7 shows that C_{ϕ} must be bounded into $A^{p,\alpha}(B_N)$ for all $\alpha \geq N-2$. This leads naturally to the question of whether the weight $\alpha = N-2$ is optimal in Theorem 7. We believe it is, and in support of this we offer the following observation. For any $\phi \colon B_N \to B_N$ the same sort of slice integration argument used in the proof of Proposition 4 (specialized to the ball) shows that

$$\sigma_B \phi^{-1} S(\zeta, t) = O(t)$$

for $\zeta \in \partial B_N$ and t > 0 (again, we identify ϕ with its a.e. radial extension to ∂B_N). Moreover, the worst case situation $\sigma_B \phi^{-1} S(\zeta, t) \simeq t$ can occur: if γ is a non-constant inner function on B_N with $\gamma(0) = 0$ define ϕ on B_N by $\phi = (\gamma, 0')$. Then since γ is measure-preserving as a map from ∂B_N to $\partial \Delta$, $\sigma_B \phi^{-1} S(e_1, t) = t$. Unfortunately this example is not amenable to calculation of $\lambda_B^\alpha \phi^{-1} S(e_1, t)$ due to the bad oscillatory behavior of γ near points of ∂B_N . We do not know if $\sigma_B \phi^{-1} S(\zeta, t) \simeq t$ can occur, say, with a Lip 1 mapping ϕ ; such an example would give $\lambda_B^\alpha \phi^{-1} S(\zeta, t) \simeq t^{\alpha+2}$, which in turn would show that the exponent $\alpha = N - 2$ in Theorem 7 cannot be replaced by anything smaller.

The above inner function example can be used to show that Theorem 9 is optimal in the ball, as the relevant computations involve $\sigma_B\phi^{-1}$ rather than $\lambda_B^{\alpha}\phi^{-1}$. Specifically there exist $\phi\colon B_N\to B_N$ with $\phi(B_N)\subset D_{\alpha_1}(\zeta)$ ($\alpha_1=\sec\frac{\pi}{2N}$) and C_{ϕ} bounded but not compact from $H^p(B_N)$ to $H^p(B_N)$, and for $\beta>\alpha_1$, there exist $\phi\colon B_N\to B_N$ with $\phi(B_N)\subset D_{\beta}(\zeta)$ yet C_{ϕ} not bounded from $H^p(B_N)$ to $H^p(B_N)$. See [M] for the details.

REFERENCES

- [A] M. Abate, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), 645-655.
- [CW] J. A. Cima and W. R. Wogen, Unbounded composition operators on $H^2(B_2)$, Proc. Amer. Math. Soc. 99 (1987), 477-483.
- [H] L. Hörmander, L^p estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78.
- [K] S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982.
- [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- [L2] _____, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications, 1981, Bulgar. Acad. Sci., Sofia, Bulgaria, 1984, pp. 341-364.
- [L3] _____, A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 193 (1986), 559–579.
- [L4] _____, Holomorphic invariants, normal forms, and the moduli space of convex domains, Ann. of Math. (2) 128 (1988), 43-78.
- [LR] S. Y. Li and B. Russo, On compactness of composition operators in Hardy spaces of several variables, Proc. Amer. Math. Soc. 123 (1995), 161-171.
- [M] B. D. MacCluer, Compact composition operators on $H^p(B_N)$, Michigan Math. J. 32 (1985), 237-248.
- [MS] B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), 878-906.
- [RW] H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint, 1983.
- [R] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, Berlin, 1980.
- [S] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, NJ, 1972.
- [V] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394.
- [W] W. R. Wogen, The smooth mappings which preserve the Hardy space $H^2(B_n)$, Oper. Theory: Adv. Appl. 35 (1988), 249-267.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF RICHMOND, RICHMOND, VIRGINIA 23173

Current address: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599

Current address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: pmercer@math.purdue.edu