
proceedings of the
american mathematical society
Volume 123, Number 7, July 1995

COMPOSITION OPERATORS BETWEEN HARDY
AND WEIGHTED BERGMAN SPACES

ON CONVEX DOMAINS IN C"

BARBARA D. MacCLUER AND PETER R. MERCER

(Communicated by Palle E. T. Jorgensen)

Abstract. Suppose ß is a bounded, strongly convex domain in C^ with

smooth boundary and <p\ £2 —» Í2 is an arbitrary holomorphic map. While in

general the composition operator C^ need not map the Hardy space Hp(Sî)

into itself when N > 1 , our main theorem shows that C^ does map Hp (Í2)

boundedly into a certain weighted Bergman space on Í2, where the weight

function depends on the dimension N . We also consider properties of C^ on

Hp(Çî) when (j>(Q) is contained in an approach region in Í2 .

1. Introduction

For ¡Q a domain in C^ and tj>: Q —• Q holomorphic, the composition

operator Q, with symbol </> is defined by C^f) = f o <j>, for / holomorphic
on Q. When ¡Q is the unit disc A in C, it is well known that for every

holomorphic <p : A —> A, Q will be a bounded operator on the Hardy spaces

HP(A), for all p . However when Í2 is the unit ball Bn , N > 1, this is no
longer the case; various examples have been given to show that Q may fail to

be bounded on the Hardy spaces HP(B^) (0 < p < oo), and several authors
[CW, M, MS, W] have considered the problem of characterizing those </> f°r

which Cp is bounded on Hp(Bn) . A completely satisfactory answer to this

question is not yet known.

Here we will consider more generally the case that Q is a bounded, strongly
convex domain in C^ with smooth boundary. Our main result will show that

for every holomorphic tf> : Q —► Q, Q, is a bounded map of Hp (Ci) into the

weighted Bergman space Ap'a(Ci) = {/ holomorphic : /Q |/(z)|p dX^(z) < 00},

where a = TV - 2 and dX^(z) = (dist(z, dii))a dXa(z) with dXa(z) normal-

ized volume measure on Ci and dist(z, d(iï)) the Euclidean distance from z

to dCl. In particular, when Q = BN, this says that every Q, maps Hp(Bn)

boundedly into Ap'N~2(BN) = {f holomorphic:¡B \f(z)\p(l - \z\)N~2 dXB(z)).
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We also consider compactness properties of Q: Hp(Ci) —* Hp(Ci) when

<f>(Ci) is contained in an approach region at some Ç e dd. Our result here gen-

eralizes a previously known result in the ball ([M, Theorem 2.2]) which showed

that if (j>(Bff) is contained in a Koranyi approach region of appropriately small
aperture (depending on the dimension N), then Q is compact as an operator

fron Hp(BN) to HP(BN).

2. Notation and background

In this section we fix our notation and collect some relevant background

material. In all of what follows, Ci cc CN will be a bounded strongly convex

domain with C°° boundary, and BN will be the unit ball in C^, except that

when JV= 1 we write instead A for the unit disc. Normalized surface area

measure on dCi and dB^ will be denoted by Oq and Obn (or just Ob if the

dimension need not be explicitly shown) respectively. Similarly Xçi, Xb denote

normalized volume measure on Ci and BN. Recall that a holomorphic map

from A to Ci is called an extremal map ([LI]), or complex geodesic ([V]) if it is

an isometry with respect to the Kobayashi distances on A and Ci. For zq e Ci

and x e dCi there is a unique extremal map tpx : A -> Ci satisfying tpx(0) = z0

and tpx(l) = x; tpx is C°° on Ä with tpx(dA) c dd ([LI, A]).
Associated with each such extremal map tpx is a retraction px , which is a

holomorphic map of Ci onto <px(A) c Ci satisfying

pxotpx(X) = tpx(X)   VXeA,

and

Px°PX= PX

[LI, RW].
Note that in the ball BN with z0 = 0 we have cpx(X) = Xx (x e dBN, X e A)

and px(z) = (z, x)x (z e Bn) , where ( , ) denotes the usual inner product

in C".
There is also, for_each_fixed direction v ^ 0 in CN and zq e Ci, a unique

extremal map cpv: A-+ Ci, C°° on dA, satisfying

<pv(0) = z0,

<p'v(0) = rv

with r > 0 maximal [LI, RW]. From these extremal maps Lempert has con-

structed a canonical mapping *P: BN -» Ci called the spherical representation

of Ci, defined (for z0 fixed in Ci) by

V(0) = z0,

V(v) = <pv(\\v\\),        v¿0inBN.

It is easy to see that ¥ is holomorphic on slices through the origin. Moreover,

¥ is a homeomorphism between B^ and Ci which is a smooth diffeomorphism

off any neighborhood of 0 (but including dB^) [LI, Théorème 3; L3, Theorem

5.1]. Its inverse *¥~x : Ci —> B^ is given by
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where kçi is the Kobayashi distance on Ci and tanh/cn(z0, z) = 1 if z edCi.

Moreover, <px(reie) = W(rew¥-l(x)) for r e [0, 1], 8 real, and x e 8Ü

([A]). The reader may check that with Ci = BN and z0 = 0, 4* is the identity.
The map 4* allows us to prove a version of slice integration on 9ÎÎ, gen-

eralizing Proposition 1.4.7(i) of [R] for the ball. This lemma will be used in

§4.

Lemma 1. For integrable f on dCi

[  fdoQ* [    I* f°<px(ei0)d6doa(x),
JdQ JdilJo

where « indicates that the ratio of the two quantities is bounded above and below

by finite positive constants independent of f.

Proof. Fix z0 e Ci and let 4* be the spherical representation of Ci. Use the
fact that 4* is a diffeomorphism between dBN and dd together with slice

integration in B^ to see that

l   fdoQ= i    foVdoaoVK¡    foVdOB
JdO. JdBN JdBN

= ¿/     I* f°V(ei9r\)dedoB(n)
ln JdBN Jo

= T- /    / n f^(eie^-\x))d8doBo^-x(x)
2n Jan Jo

JdilJo

IIJdíiJo

fo^(e")^-x(x))d8doa(x)

2%

fotpx(eie)d8doa(x).   D
ida Jo

The following lemma due to Lempert will play an essential role in our main

theorems in §§3 and 4. Let da(z) be the Euclidean distance from z to dd.

Lemma 2 [LI, Proposition 12]. Let cp: A —> Ci be an extremal map.   There

exists a finite constant c depending only on tp(0) so that

dQ(tp(X))<c(l-\X\)

for all XeA.

3. Main theorem

For 0 < p < oo the spaces Hp(Ci) are the usual holomorphic Hardy spaces

on Q ([S; K, Chapter 8]). For a > 0 define the weighted Bergman space

Ap'a(Ci) to be those holomorphic / on Ci satisfying

p = ( \f(z)\pd^(z)dXa(z)<^,
Ja

where dft(z) - (dist(z, dCi))a . The weighted volume measure d^(z)dXa(z)

will be abbreviated as dX^ . In the case Ci = Bn we have the standard weighted

Bergman spaces.

Our first lemma is a quantitative formulation of the fact that in the disc every

composition operator is bounded on the standard weighted Bergman spaces.
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This result is well known (it is a consequence of Proposition 3.4 and Theorem

4.3 of [MS]); we include its proof for completeness. For e,e e dA and t > 0,

S(ew, t) = {z e A: |1 - ze~'e\ < t} , and let a be non-negative.

Lemma 3. Let y: A-» A be holomorphic with y(0) = 0. There exists an absolute

constant C (independent of the particular choice of y) so that

XaA(y-x(S(ew,t)))<Cta+2

for all real 8 and t > 0.

Proof. Littlewood's subordination principle shows that the operator Cy is
bounded on the weighted Bergman space Ap'a(A), with the norm of Cy = 1.

In particular, for all / e A2'a(A) we have

f\foy\2dXl(z)< ¡\f\2dXl(z)
Ja Ja

or

Í \f\2d(Xp~x) < ¡\f\2dX%(z).
Ja Ja

Apply this to the test functions

.4 = (l-zt7Jr(a+2)€,42>Q(A)

(which have norms in A2'a(A) comparable to (1 - |tt;|2)_(a+2^2) for the choice

w = (1 - t)e'6 . Using the estimate

\fM\2>dTj^IjI   on S(eie,t)

for some absolute constant ex we obtain

c>72¿2)^r1(^e,0)<C27¿I,

which gives the desired result.   D

Now we return to our map (p: Ci -> Ci. Pick an arbitrary base point zo eCi
and let <b(z0) = w0. Fix Ç e dd, and let (pr : A —> Ci be the extremal map with
cpr(0) = Wo and q>r(l) = £ • Denote its associated retraction by pr. For each

x edCi we consider the holomorphic self-map xx of the disc A defined by

Xx = <pTx opç o (p o <px ,

where the extremal maps ^:A-»fi have <px(0) = zq and tpx(l) = x . Notice

that for each x edCi, tx(0) = 0. Also define sets S(Ç, t) for t > 0 by

S(C,t) = {zeCi:\l-tp-xopr(z)\<t}.

In the special case Ci = BN , z0 = Wq = 0 the maps xx are just

xx(X) = (<b(Xx), Ç)

and S(C, t) = {z e BN: \1 - (z, Q\ < t}, which is the usual definition of a
Carleson set (based at Ç) in B^ and consistent with our previous use of the

notation S(e'e, t) in A. We will see later that in general these sets S(Ç, t) are

equivalent to the usual Carleson sets in Ci as defined by Hormander.

The next proposition uses the maps xx to estimate

ka4>-xS(t;,t).

This estimate will be the key ingredient in the proof of our main theorem.
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Proposition 4. There exists a finite constant C, independent of Ç e dCi and

t > 0, so that
Xn<f>-xS(Ç,t)<Cta+2.

In particular, when a = N - 2, we have

X»-2cb-lS(Ç,t) = 0(tN)

for Ce dQ, t>0.

Proof. Clearly it is enough to show this for all t < to, where to is an arbitrary

positive number. Fix a neighborhood V of z0, V ce Ci, and find to > 0 so
that <j)-xS(Cj_t) n_V is empty for all £ e dCi and t < t0 . Then find e > 0 so

that if 4*: BN —> Q is the spherical representation of Ci described in §2 (with
4*(0) = zo) we have 4'(5£) c V , where Be is the ball of radius e centered at

0.
Writing /0-i5 for the characteristic function of a set çb~xS(Ç, t) we have

the following estimate for all 0 < t < to :

Xa<p-xS(Ç, t)= f x^s(w)d^(w)dXçl(w)
Ja

= /     X</>->s(w)d^(w)dXçl(w)
Ja\v

<ci¡     x^So^(z)d^(z))dXB(z):
>B\Be

where ex is a constant independent of Ç and t, since 4* is a diffeomorphism

on Bn\B£ . Changing to polar coordinates and using slice integration in the ball

gives that this last integral is

C2 Í r1N~x í    j'x^so^(rei6n)d^(reien))d8doB(n)dr
Js Job Jo

= c2 [ r2N~x í    i nX<p-isoV(re'eV-x(x))

Je Jan Jo

• d^(x¥(reWx¥-x(x)) dd doB ° x¥~x(x) dr

r2n

<c3 f r2N~x f   i \rlso^r'w)
Je Jao. Jolan Jo

Jdui-l• d^(re,thV-x (x)) dd doa(x) dr,

again because 4* is a diffeomorphism on ôBn . Since

V(rewV-x(x)) = tpx(reie),

the integrand in the inner integral of the last line is X^-^s(<Px(re'e)) d£((px(reie)),

which, by Lemma 2, is bounded above by a constant multiple of X^-^s^x^'8))

• (1 - r)a (where we use the fact that <px(0) = z0 for all x e dCi). At this point

we have
pi /»       r2n

^-lS(C,t)<c4      r2N~x        /    x*->S(9x(reie))d0d<ja(x)(l-r)°dr
Je Jaa Jo

< Ca, \    ¡ x^-^(Px(u)dXl(u)doa(x).
J oil Ja
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Now

X^s9x(u) = 1 o 4> o (px(u) e S(C, 0

&\1 ~(?lX o Pi o çb o <px(u)\ <t

& xx(u) e S(l, t).

Applying Lemma 3 gives

Xa<p-xS(Ç,t)<c5ta+2,

where c5 depends on neither Ç nor t, and we are done.   □

To use this proposition to prove the main theorem we need to relate the sets

S(C, t) to the Carleson sets defined by Hormander [H] (in the general setting

of bounded strictly pseudoconvex domains with C2 boundary). These sets,

denoted A(Ç, t) for £ e dd and t > 0, are defined as follows: Let itr be the

complex tangent space at Ç, and let A(Ç, t) be all points in Ci whose distance

to the ball in nr with center Ç and radius \ß is at most t. We claim that

the sets S(Ç, t) and A(Ç, t) are comparable in the sense that there exist finite
positive constants kx, k2 so that

A(Ç,k2t)çS(Ç,t)CA(i;,klt).

To see this we make use of a special biholomorphic map of Q to a domain Ci'

which flattens out the image of the extremal disc tpr (A) in Ci. The existence of

this biholomorphism and the relevant properties of it and the domain Ci' are
contained in the following theorem.

Theroem 5 [LI, L2, L4]. Given a strongly convex domain Ci cc CN with C°°

boundary and an extremal map <p : A —> Ci with associated retraction p, there
exists a domain Ci' ce C^ and a biholomorphism A: Ci —> Ci' which is C°°

on Ci such that:

(i)   Ao<p(X) = (X,0')  VAgA.
(ii)   Aop = n o A, where n(z\, z') = (z. , 0').

(iii) For each Ç e dA we have (¿;, 0') € dCi' with the unit outward normal

there (£,0').
(iv)   d' is strongly convex in a neighborhood of {(Ç,0'): |£| = 1} .

Lemma 6. The sets S(Ç, t) and A(Ç, t) are comparable.

Proof. The sets A(Ç, t) are invariant under biholomorphic maps ([H, p. 73]),

so it suffices to show that the sets A(S(Ç, t)) and A(A(Q, t) are comparable,

where Ç e dd. We use Theorem 5, with tpr = tp and p{ = p. By (i) and (ii)

we have A(S(Ç, t)) = {z e Ci': \l -z{\ < t). By (iii) and (iv) and the definition

of A(Ç, t) there are constants k\, k2 > 0 such that

A(A(C), k2t) c A(S(C, 0) C A(A(C), kx t)   (V? > 0).

Now the sets tpr (A) vary continuously with Ç, e dd ([LI, Proposition 11; A,

Lemma 1.9]), so we may assume that &i, k2 are independent of Ç, and we are

done.   G

Our main theorem is as follows.
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Theorem 7. If Ci is a bounded, strongly convex domain in CN   (N > 2) with

C°° boundary, and if <f>: Ci -» Ci is homomorphic, then C$ maps Hp(Ci) bound-

edly into Ap'N~2(Ci), for each 0 < p < oo.

Proof. We wish to show that there exists C < oo so that

f \fotp(z)\pdXNa-2(z)<C i   \f\"doQ,
Ja Jan

whenever / e Hp(Ci). By Hormander's Carleson measure theorem ([H, Theo-

rem 4.3]) it suffices to show that there exists C < oo satisfying

(*) %T2<t>-xA(£, t) < CtN

for all C e dd, t > 0. Lemma 6 shows that we may replace A(Ç, t) in (*) by

S(C, t), and then the result follows from Proposition 4.   D

4. Maps into admissible regions

In Theorem 2.2 of [M] it was shown that if the holomorphic map tp: B¡y —>

Bf] has (f>(BN) contained in a Koranyi approach region of sufficiently small
aperture (depending on the dimension N), then Q will be compact on

Hp(Bn) ; moreover, this result is sharp in a natural sense. In this section we

give a theorem in the same spirit for holomorphic maps of a bounded strongly

convex domain Ci with C°° boundary. As the ideas are similar to those in the

last section we will omit some details of the arguments.

Analogous to Lemma 3 in §3 we begin with a one variable result, which
considers maps which take A into a non-tangential approach region in A.

Lemma 8 [M, Lemma 2.3]. If y: A —> A is holomorphic with y(0) = 0 and
y (A) ç {z e A: \1 - z\ < a(l - \z\)}, then there exists C < oo depending only

on a so that
oA(y-lS(l,t))<Ctb,

where b = 2 cos-* (i/o) ■ ̂ n Par{icu^ar Cy will be compact (for all a> 1).

Recall that if we fix a base point zo in our strongly convex domain Ci and

consider any extremal map <p: A —> Ci with q>(0) = z0, then Lemma 2 guaran-

tees that dçi(tp(X)) < Ci (1 - |A|) for all XeA, where c> is a finite constant not

depending on a particular map tp . By Theorem 5 there is a positive constant

c2 such that dçi(z) < c2da(p(z)) for every z e Ci, where p is the retraction

associated with tp. Just as in the proof of Lemma 6, c2 is independent of
<p(l). Thus

(4.1) dçi(z)<CxC2(l-\tp-xoP(z)\)

for all z in Q. For £ e dCi, define approach regions Da(Q by

7J>a(C) = {zeCi:\l- tp-x opr(z)\ < ada(z)}.

Notice that by (4.1) Da(Q is empty for a < -r- .
C\C2

Theorem 9. Let Ci be a smooth, strongly convex bounded domain. There exist

positive constants ao, ax (which depend on Ci, a chosen base point zo in Ci,
and for ax explicitly on the dimension N) so that for each Ç e dd we have:

(1)   Da(Q is empty for a < a0.
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(2) If qb(CÏ) c Da(Q for a0 < a < a.\, then C$ is compact from Hp(Ci) to
Hp(Cl), 0<p<oo.

(3) If <j>(CÏ) c Dai(Q, then Q is bounded from Hp(Ci) to Hp(Ci), 0 <
p < oo.

Sketch of proof. We have already observed (1) holds when an = ¡77- » By a

recent theorem of Li and Russo [LR] and Lemma 6, Q is compact from

Hp(Ci) to Hp (Ci) if

(4.2) oa<p-lS(n, t) = o(tN)

as t -> 0, uniformly in n e dd; and Q is bounded from Hp(Ci) to i7p(£î)

when

(4.3) oçlcp-xS(n,t) = 0(tN)   Vt>0,nedCi.

Thus (2) follows if a 6 (a0,cxx) and </>(Í2) c A,(f) -^ oa<f>-xS(n, t) = o(tN),

and (3) follows if <b(Ci) c Da¡(Q =► 0çi<f>-xS(n, t) = 0(tN). Here we are
identifying the map 4> with its extension a.e. to dd along inner normal vectors

([K, Proposition 8.5.1]). This was also implicit in Lemma 8.

We first consider the process of estimating oci<p~xS(n, t) when n = £ and

çb(Ci) ç Da(Ç). Exactly as in the proof of Proposition 4 define maps xx : A —> A

(x e dSi) by xx = q>^{ o p^o (po tpx . We have t^(0) = 0, and by hypothesis

and (4.1),

|1 -?x(X)\ <CiC2a(l -\tp~X o pr o (p o tpx(X)\)

which says tx(A) ç {X e A: |1 - X\ < CxC2a(l - \X\)} . By Lemma 8

o&x~xS(l, 0 <Ctb,

where C depends on c\C2a and ¿ = 7r/(2cos_1(j^)) •

By Lemma 1,

oSi(cb-x(S(i:,t)ndCi) = oç1(A)

<c [    I   XA°9x(eie)d8doii(x)
Jan Jo

<ctb,

since xa ° <Px(ei8) = 1 «*■ |1 - Tx(<?,e)| < í.

Now set qi = j^-sec^F.   If cb(Ci) ç 7J)a(C) where a < a- , then b > N

and the above calculation shows an(^"'5(C, OnöQ) = o(tN) while if (/)(Q) ç

7J>a,(C) we have

ff0(r15(i,Onoß) = 0(rJV).

To obtain these same estimates for

Oçl(tp-xS(n,t)ndd)

where n e dCi is arbitrary, we observe the following: there is a constant k\, in-

dependent of n and t, so that if S(n, t)nDa(Q is non-empty, then S(Ç, k\t) D

S(n, t). To see this first notice that there is a constant k2 (depending only on

Ci) so that if S(n, t) and S(Ç, t) intersect, then S(Ç, k2t) D S(n, t) (see, for
example, [H, p. 73] where the analogous property is proved for the comparable
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sets A(C, 0) • Now observe that if z e S(n, t) n Da(Q , then z e S(Ç, k3at)

for some constant k^ and therefore S(n, t) ç S(Ç, k2kiat) = S(Ç, kxt). Thus

<ja((p-1S(n,t)ndCi)<oçl((b-lS(C,kit)ndCi)

<c(kxt)b = c'tb,

with b as before, as desired.   D

In the case Ci = BN and z0 = 0 both c\ and c2 can be taken to be 1 and

the regions Da(Q are the usual Koranyi approach regions in B :

Da(Ç) = {zeB:\l-(z,0\<a(l-\z\)}.

In this setting Theorem 9 becomes exactly Theorem 2.2 of [M], with qo = 1

and ax = sec^ .
We finish with some brief remarks on examples. Consider the map <f>: B^ —>

Bf] defined by

K
<p(zx, z2, ... , zN) = (Nizxz2---zN,0').

A direct computation ([MS, p. 904]) shows that for t small

X%(<p-l(S(el,t))^ta+UÎT1+2,

where ex = (1, 0') edBN.
Thus in this example Q is not bounded from HP(BN) to Ap'a(Bfi) for any

a < ^fl (notice that the spaces Ap'a(Bti) may be defined for any a > -1),

whereas Theorem 7 shows that Q, must be bounded into Ap'a(BN) for all

a > N-2. This leads naturally to the question of whether the weight a = N-2

is optimal in Theorem 7. We believe it is, and in support of this we offer the

following observation. For any <p: B^ —> Bn the same sort of slice integration

argument used in the proof of Proposition 4 (specialized to the ball) shows that

oB(b-xS(C,t) = 0(t)

for C e dBN and t > 0 (again, we identify <j> with its a.e. radial extension

to dBfi) ■ Moreover, the worst case situation OBçb~xS(Ç, t) ~ t can occur: if

y is a non-constant inner function on Bn with y(0) = 0 define <p on B^ by

tp = (y, 0'). Then since y is measure-preserving as a map from dBx to dA,

Oß<p~xS(ex, f) = t. Unfortunately this example is not amenable to calculation

of Xg(p~xS(ex, t) due to the bad oscillatory behavior of y near points of dB^ ■

We do not know if oB<P~]S(Ç, /) ~ t can occur, say, with a Lip 1 mapping tp;

such an example would give XB<p~xS(Ç, t) ~ ta+2, which in turn would show

that the exponent a = N - 2 in Theorem 7 cannot be replaced by anything

smaller.
The above inner function example can be used to show that Theorem 9 is

optimal in the ball, as the relevant computations involve ob<P~x rather than

Xg(p~x . Specifically there exist tp: BN —> Bn with <P(Bn) C Dai(Q (ax =

sec ¿fa) and C¿ bounded but not compact from Hp(Bn) to HP(BN), and for
ß > ax, there exist tp: BN -» BN with <p(BN) c Dß(Q yet Q not bounded
from Hp(BN) to HP(BN). See [M] for the details.
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