COMPOSITION OPERATORS BETWEEN HARDY
AND WEIGHTED BERGMAN SPACES
ON CONVEX DOMAINS IN \mathbb{C}^N

BARBARA D. MACCLUER AND PETER R. MERCER

(Communicated by Palle E. T. Jorgensen)

Abstract. Suppose Ω is a bounded, strongly convex domain in \mathbb{C}^N with smooth boundary and $\phi: \Omega \to \Omega$ is an arbitrary holomorphic map. While in general the composition operator C_ϕ need not map the Hardy space $H^p(\Omega)$ into itself when $N > 1$, our main theorem shows that C_ϕ does map $H^p(\Omega)$ boundedly into a certain weighted Bergman space on Ω, where the weight function depends on the dimension N. We also consider properties of C_ϕ on $H^p(\Omega)$ when $\phi(\Omega)$ is contained in an approach region in Ω.

1. Introduction

For Ω a domain in \mathbb{C}^N and $\phi: \Omega \to \Omega$ holomorphic, the composition operator C_ϕ with symbol ϕ is defined by $C_\phi(f) = f \circ \phi$, for f holomorphic on Ω. When Ω is the unit disc A in \mathbb{C}, it is well known that for every holomorphic $\phi: \Delta \to \Delta$, C_ϕ will be a bounded operator on the Hardy spaces $H^p(\Delta)$, for all p. However when Ω is the unit ball B_N, $N > 1$, this is no longer the case; various examples have been given to show that C_ϕ may fail to be bounded on the Hardy spaces $H^p(B_N)$ ($0 < p < \infty$), and several authors [CW, M, MS, W] have considered the problem of characterizing those ϕ for which C_ϕ is bounded on $H^p(B_N)$. A completely satisfactory answer to this question is not yet known.

Here we will consider more generally the case that Ω is a bounded, strongly convex domain in \mathbb{C}^N with smooth boundary. Our main result will show that for every holomorphic $\phi: \Omega \to \Omega$, C_ϕ is a bounded map of $H^p(\Omega)$ into the weighted Bergman space $A^p,\alpha(\Omega) = \{f$ holomorphic: $\int_{\Omega} |f(z)|^p \, d\lambda_{\alpha}(z) < \infty\}$, where $\alpha = N - 2$ and $d\lambda_{\alpha}(z) = (\text{dist}(z, \partial\Omega))^\alpha \, d\lambda_{N}(z)$ with $d\lambda_N(z)$ normalized volume measure on Ω and $\text{dist}(z, \partial\Omega)$ the Euclidean distance from z to $\partial\Omega$. In particular, when $\Omega = B_N$, this says that every C_ϕ maps $H^p(B_N)$ boundedly into $A^p, N - 2(B_N) = \{f$ holomorphic: $\int_{B_N} |f(z)|^p (1 - |z|)^{N-2} \, d\lambda_{B}(z)\}$.

Received by the editors October 15, 1993.
1991 Mathematics Subject Classification. Primary 47B38; Secondary 32H02.
The first author's research was supported in part by a grant from the National Science Foundation.
The second author's research was supported in part by N.S.E.R.C. Canada.

©1995 American Mathematical Society

2093
We also consider compactness properties of $C_{\phi}: H^p(\Omega) \to H^p(\Omega)$ when $\phi(\Omega)$ is contained in an approach region at some $\zeta \in \partial \Omega$. Our result here generalizes a previously known result in the ball ([M, Theorem 2.2]) which showed that if $\phi(B_N)$ is contained in a Koranyi approach region of appropriately small aperture (depending on the dimension N), then C_{ϕ} is compact as an operator from $H^p(B_N)$ to $H^p(B_N)$.

2. Notation and background

In this section we fix our notation and collect some relevant background material. In all of what follows, $\Omega \subset \subset \mathbb{C}^N$ will be a bounded strongly convex domain with C^∞ boundary, and B_N will be the unit ball in \mathbb{C}^N, except that when $N = 1$ we write instead A for the unit disc. Normalized surface area measure on $\partial \Omega$ and ∂B_N will be denoted by σ_Ω and σ_{B_N} (or just σ_B if the dimension need not be explicitly shown) respectively. Similarly λ_Ω, λ_B denote normalized volume measure on Ω and B_N. Recall that a holomorphic map from Δ to Ω is called an extremal map ([L1]), or complex geodesic ([V]) if it is an isometry with respect to the Kobayashi distances on Δ and Ω. For $z_0 \in \Omega$ and $x \in \partial \Omega$ there is a unique extremal map $\varphi_x: \Delta \to \Omega$ satisfying $\varphi_x(0) = z_0$ and $\varphi_x(1) = x$; φ_x is C^∞ on Δ with $\varphi_x(\partial \Delta) \subset \partial \Omega$ ([L1, A]).

Associated with each such extremal map φ_x is a retraction p_x, which is a holomorphic map of Ω onto $\varphi_x(\Delta) \subset \Omega$ satisfying

$$p_x \circ \varphi_x(\lambda) = \varphi_x(\lambda) \quad \forall \lambda \in \Delta,$$

and

$$p_x \circ p_x = p_x$$

[L1, RW].

Note that in the ball B_N with $z_0 = 0$ we have $\varphi_x(\lambda) = \lambda x$ ($x \in \partial B_N$, $\lambda \in \Delta$) and $p_x(z) = \langle z, x \rangle x$ ($z \in B_N$), where \langle , \rangle denotes the usual inner product in \mathbb{C}^N.

There is also, for each fixed direction $v \neq 0$ in \mathbb{C}^N and $z_0 \in \Omega$, a unique extremal map $\varphi_v: \Delta \to \Omega$, C^∞ on $\partial \Delta$, satisfying

$$\varphi_v(0) = z_0,$$

$$\varphi'_v(0) = rv$$

with $r > 0$ maximal [L1, RW]. From these extremal maps Lempert has constructed a canonical mapping $\Psi: \overline{B}_N \to \overline{\Omega}$ called the spherical representation of Ω, defined (for z_0 fixed in Ω) by

$$\Psi(0) = z_0,$$

$$\Psi(v) = \varphi_v(||v||), \quad v \neq 0 \text{ in } \overline{B}_N.$$

It is easy to see that Ψ is holomorphic on slices through the origin. Moreover, Ψ is a homeomorphism between \overline{B}_N and $\overline{\Omega}$ which is a smooth diffeomorphism off any neighborhood of 0 (but including ∂B_N) [L1, Théorème 3; L3, Theorem 5.1]. Its inverse $\Psi^{-1}: \overline{\Omega} \to \overline{B}_N$ is given by

$$\Psi^{-1}(z) = \tanh k_\Omega(z_0, z) \frac{\varphi'_z(0)}{||\varphi'_z(0)||},$$
where k_{Ω} is the Kobayashi distance on Ω and $\tanh k_{\Omega}(z_0, z) = 1$ if $z \in \partial \Omega$. Moreover, $\varphi_x(re^{i\theta}) = \Psi(re^{i\theta}\Psi^{-1}(x))$ for $r \in [0, 1]$, θ real, and $x \in \partial \Omega$ ([A]). The reader may check that with $\Omega = B_N$ and $z_0 = 0$, Ψ is the identity.

The map Ψ allows us to prove a version of slice integration on $\partial \Omega$, generalizing Proposition 1.4.7(i) of [R] for the ball. This lemma will be used in §4.

Lemma 1. For integrable f on $\partial \Omega$

$$\int_{\partial \Omega} f \, d\sigma_{\Omega} \approx \int_{\partial B_N} f \circ \varphi_x(e^{i\theta}) \, d\sigma_{B_N} \circ \Psi \approx \int_{\partial B_N} f \circ \Psi \, d\sigma_{B_N},$$

where \approx indicates that the ratio of the two quantities is bounded above and below by finite positive constants independent of f.

Proof. Fix $z_0 \in \Omega$ and let Ψ be the spherical representation of Ω. Use the fact that Ψ is a diffeomorphism between ∂B_N and $\partial \Omega$ together with slice integration in B_N to see that

$$\int_{\partial \Omega} f \, d\sigma_{\Omega} = \int_{\partial B_N} f \circ \Psi \, d\sigma_{B_N} \circ \Psi \approx \int_{\partial B_N} f \circ \Psi \, d\sigma_{B_N} \circ \Psi^{-1}(x) \approx \int_{\partial \Omega} f \circ \varphi_x(e^{i\theta}) \, d\sigma_{\Omega}(x).$$

The following lemma due to Lempert will play an essential role in our main theorems in §§3 and 4. Let $d_{\Omega}(z)$ be the Euclidean distance from z to $\partial \Omega$.

Lemma 2 [L1, Proposition 12]. Let $\varphi: \Delta \rightarrow \Omega$ be an extremal map. There exists a finite constant c depending only on $\varphi(0)$ so that

$$d_{\Omega}(\varphi(\lambda)) \leq c(1 - |\lambda|)$$

for all $\lambda \in \Delta$.

3. Main theorem

For $0 < p < \infty$ the spaces $H^p(\Omega)$ are the usual holomorphic Hardy spaces on Ω ([S; K, Chapter 8]). For $\alpha \geq 0$ define the weighted Bergman space $A^{p, \alpha}(\Omega)$ to be those holomorphic f on Ω satisfying

$$\|f\|^{p, \alpha}_{\Omega} \equiv \int_{\Omega} |f(z)|^p \, d\Omega^\alpha(z) < \infty,$$

where $d_{\Omega}^\alpha(z) = (\text{dist}(z, \partial \Omega))^\alpha$. The weighted volume measure $d\Omega^\alpha(z) \, d\lambda_{\Omega}(z)$ will be abbreviated as $d\lambda_{\Omega}^\alpha$. In the case $\Omega = B_N$ we have the standard weighted Bergman spaces.

Our first lemma is a quantitative formulation of the fact that in the disc every composition operator is bounded on the standard weighted Bergman spaces.
This result is well known (it is a consequence of Proposition 3.4 and Theorem 4.3 of [MS]); we include its proof for completeness. For \(e^{i\theta} \in \partial \Delta \) and \(t > 0 \), \(S(e^{i\theta}, t) = \{ z \in \Delta : |1 - ze^{-i\theta}| < t \} \), and let \(\alpha \) be non-negative.

Lemma 3. Let \(\gamma : \Delta \to \Delta \) be holomorphic with \(\gamma(0) = 0 \). There exists an absolute constant \(C \) (independent of the particular choice of \(\gamma \)) so that

\[
\lambda^\alpha_{\Delta}(\gamma^{-1}(S(e^{i\theta}, t))) \leq Ct^{\alpha+2}
\]

for all real \(\theta \) and \(t > 0 \).

Proof. Littlewood's subordination principle shows that the operator \(C_\gamma \) is bounded on the weighted Bergman space \(A^{p, \alpha}(\Delta) \), with the norm of \(C_\gamma = 1 \). In particular, for all \(f \in A^{2, \alpha}(\Delta) \) we have

\[
\int_{\Delta} |f \circ \gamma|^2 d\lambda^\alpha_{\Delta}(z) \leq \int_{\Delta} |f|^2 d\lambda^\alpha_{\Delta}(z)
\]

or

\[
\int_{\Delta} |f|^2 d(\lambda^\alpha_{\Delta} \gamma^{-1}) \leq \int_{\Delta} |f|^2 d\lambda^\alpha_{\Delta}(z).
\]

Apply this to the test functions

\[
f_w = (1 - z\overline{w})^{-(\alpha+2)} \in A^{2, \alpha}(\Delta)
\]

(which have norms in \(A^{2, \alpha}(\Delta) \) comparable to \((1 - |w|^2)^{-(\alpha+2)/2} \)) for the choice \(w = (1 - t)e^{i\theta} \). Using the estimate

\[
|f_w(z)|^2 \geq c_1 \frac{1}{(t^{\alpha+2})^2} \text{ on } S(e^{i\theta}, t)
\]

for some absolute constant \(c_1 \) we obtain

\[
c_1 \frac{1}{t^{2(\alpha+2)}} \lambda^\alpha_{\Delta} \gamma^{-1}(S(e^{i\theta}, t)) \leq c_2 \frac{1}{t^{\alpha+2}},
\]

which gives the desired result. \(\square \)

Now we return to our map \(\phi : \Omega \to \Omega \). Pick an arbitrary base point \(z_0 \in \Omega \) and let \(\phi(z_0) = w_0 \). Fix \(\zeta \in \partial \Omega \), and let \(\phi_\zeta : \Delta \to \Omega \) be the extremal map with \(\phi_\zeta(0) = w_0 \) and \(\phi_\zeta(1) = \zeta \). Denote its associated retraction by \(p_\zeta \). For each \(x \in \partial \Omega \) we consider the holomorphic self-map \(\tau_x \) of the disc \(\Delta \) defined by

\[
\tau_x = \phi_\zeta^{-1} \circ p_\zeta \circ \phi \circ \phi_x,
\]

where the extremal maps \(\phi_x : \Delta \to \Omega \) have \(\phi_x(0) = z_0 \) and \(\phi_x(1) = x \). Notice that for each \(x \in \partial \Omega \), \(\tau_x(0) = 0 \). Also define sets \(S(\zeta, t) \) for \(t > 0 \) by

\[
S(\zeta, t) = \{ z \in \Omega : |1 - \phi_\zeta^{-1} \circ p_\zeta(z)| < t \}.
\]

In the special case \(\Omega = B_N \), \(z_0 = w_0 = 0 \) the maps \(\tau_x \) are just

\[
\tau_x(\lambda) = (\phi(\lambda x), \zeta)
\]

and \(S(\zeta, t) = \{ z \in B_N : |1 - (z, \zeta)| < t \} \), which is the usual definition of a Carleson set (based at \(\zeta \)) in \(B_N \) and consistent with our previous use of the notation \(S(e^{i\theta}, t) \) in \(\Delta \). We will see later that in general these sets \(S(\zeta, t) \) are equivalent to the usual Carleson sets in \(\Omega \) as defined by Hormander.

The next proposition uses the maps \(\tau_x \) to estimate

\[
\lambda^\alpha_{\Omega} \phi^{-1} S(\zeta, t).
\]

This estimate will be the key ingredient in the proof of our main theorem.
Proposition 4. There exists a finite constant C, independent of $\zeta \in \partial \Omega$ and $t > 0$, so that
\[\lambda^\alpha_\Omega \phi^{-1} S(\zeta, t) \leq C t^{a+2}. \]
In particular, when $\alpha = N - 2$, we have
\[\lambda^{N-2}_\Omega \phi^{-1} S(\zeta, t) = O(t^N) \]
for $\zeta \in \partial \Omega$, $t > 0$.

Proof. Clearly it is enough to show this for all $t < t_0$, where t_0 is an arbitrary positive number. Fix a neighborhood V of z_0, $V \subset \Omega$, and find $t_0 > 0$ so that $\phi^{-1} S(\zeta, t) \cap V$ is empty for all $\zeta \in \partial \Omega$ and $t < t_0$. Then find $\epsilon > 0$ so that if $\Psi: B_N \to \Omega$ is the spherical representation of Ω described in §2 (with $\Psi(0) = z_0$) we have $\Psi(B_\epsilon) \subset V$, where B_ϵ is the ball of radius ϵ centered at 0.

Writing $\chi_{\phi^{-1} S}$ for the characteristic function of a set $\phi^{-1} S(\zeta, t)$ we have the following estimate for all $0 < t < t_0$:
\[
\lambda^\alpha_\Omega \phi^{-1} S(\zeta, t) = \int_\Omega \chi_{\phi^{-1} S}(w) d\mu_\Omega(w) d\lambda_\Omega(w)
\]
\[
= \int_{\Omega \setminus V} \chi_{\phi^{-1} S}(w) d\mu_\Omega(w) d\lambda_\Omega(w)
\]
\[
\leq c_1 \int_{B_\epsilon \setminus B_\epsilon} \chi_{\phi^{-1} S} \circ \Psi(z) d\mu_\Omega(\Psi(z)) d\lambda_B(z),
\]
where c_1 is a constant independent of ζ and t, since Ψ is a diffeomorphism on $B_N \setminus B_\epsilon$. Changing to polar coordinates and using slice integration in the ball gives that this last integral is
\[
c_2 \int_\epsilon^1 \int_0^{2\pi} \int_0^{2\pi} \chi_{\phi^{-1} S} \circ \Psi(r \omega \eta) d\mu_\Omega(\Psi(r \omega \eta)) d\theta d\sigma_B(\eta) dr
\]
\[
= c_2 \int_\epsilon^1 \int_0^{2\pi} \chi_{\phi^{-1} S} \circ \Psi(r \omega \eta) d\mu_\Omega(\Psi(r \omega \eta)) d\theta d\sigma_B \circ \Psi^{-1}(x) dr
\]
\[
\leq c_3 \int_\epsilon^1 \int_0^{2\pi} \chi_{\phi^{-1} S} \circ \Psi(r \omega \eta) d\mu_\Omega(\Psi(r \omega \eta)) d\theta d\sigma_B \circ \Psi^{-1}(x) dr
\]
again because Ψ is a diffeomorphism on ∂B_N. Since
\[\Psi(r \omega \eta) = \varphi_x(r \omega \eta), \]
the integrand in the inner integral of the last line is $\chi_{\phi^{-1} S}(\varphi_x(r \omega \eta)) d\mu_\Omega(\varphi_x(r \omega \eta))$, which, by Lemma 2, is bounded above by a constant multiple of $\chi_{\phi^{-1} S}(\varphi_x(r \omega \eta)) \cdot (1 - r)^a$ (where we use the fact that $\varphi_x(0) = z_0$ for all $x \in \partial \Omega$). At this point we have
\[
\lambda^\alpha_\Omega \phi^{-1} S(\zeta, t) \leq c_4 \int_\epsilon^1 \int_0^{2\pi} \chi_{\phi^{-1} S}(\varphi_x(r \omega \eta)) d\theta d\sigma_B(\varphi_x(r \omega \eta) (1 - r)^a dr
\]
\[
\leq c_4 \int_\epsilon^1 \int_\Delta \chi_{\phi^{-1} S}(u) d\lambda_\Omega^a(u) d\sigma_B(\varphi_x(u)),
\]
Now
\[\chi_{\phi^{-1}S}(u) = 1 \iff \phi \circ \varphi_x(u) \in S(\zeta, t) \]
\[\iff |1 - \varphi_x^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x(u)| < t \]
\[\iff \tau_x(u) \in S(1, t). \]

Applying Lemma 3 gives
\[\lambda_{\Omega}^\alpha \varphi_x^{-1} S(\zeta, t) \leq c_5 t^{\alpha + 2}, \]
where \(c_5 \) depends on neither \(\zeta \) nor \(t \), and we are done. \(\square \)

To use this proposition to prove the main theorem we need to relate the sets \(S(\zeta, t) \) to the Carleson sets defined by Hormander [H] (in the general setting of bounded strictly pseudoconvex domains with \(C^2 \) boundary). These sets, denoted \(A(\zeta, t) \) for \(\zeta \in \partial \Omega \) and \(t > 0 \), are defined as follows: Let \(\pi_{\zeta} \) be the complex tangent space at \(\zeta \), and let \(A(\zeta, t) \) be all points in \(\Omega \) whose distance to the ball in \(\pi_{\zeta} \) with center \(\zeta \) and radius \(\sqrt{t} \) is at most \(t \). We claim that the sets \(S(\zeta, t) \) and \(A(\zeta, t) \) are comparable in the sense that there exist finite positive constants \(k_1, k_2 \) so that
\[A(\zeta, k_2 t) \subseteq S(\zeta, t) \subseteq A(\zeta, k_1 t). \]

To see this we make use of a special biholomorphic map of \(\Omega \) to a domain \(\Omega' \) which flattens out the image of the extremal disc \(\varphi_\zeta(\Delta) \) in \(\Omega \). The existence of this biholomorphism and the relevant properties of it and the domain \(\Omega' \) are contained in the following theorem.

Theorem 5 [L1, L2, L4]. Given a strongly convex domain \(\Omega \subset \subset C^N \) with \(C^\infty \) boundary and an extremal map \(\varphi: \Delta \to \Omega \) with associated retraction \(p \), there exists a domain \(\Omega' \subset \subset C^N \) and a biholomorphism \(\Lambda: \Omega \to \Omega' \) which is \(C^\infty \) on \(\overline{\Omega} \) such that:

(i) \(\Lambda \circ \varphi(\lambda) = (\lambda, 0') \) \(\ \forall \lambda \in \Delta. \)

(ii) \(\Lambda \circ p = \pi \circ \Lambda \), where \(\pi(z_1, z') = (z_1, 0'). \)

(iii) For each \(\zeta \in \partial \Omega \) we have \((\zeta, 0') \in \partial \Omega' \) with the unit outward normal there \((\zeta, 0'). \)

(iv) \(\Omega' \) is strongly convex in a neighborhood of \(\{(\zeta, 0'): |\zeta| = 1\}. \)

Lemma 6. The sets \(S(\zeta, t) \) and \(A(\zeta, t) \) are comparable.

Proof. The sets \(A(\zeta, t) \) are invariant under biholomorphic maps ([H, p. 73]), so it suffices to show that the sets \(A(S(\zeta, t)) \) and \(A(\Lambda(\zeta), t) \) are comparable, where \(\zeta \in \partial \Omega \). We use Theorem 5, with \(\varphi_\zeta = \varphi \) and \(p_\zeta = p \). By (i) and (ii) we have \(A(S(\zeta, t)) = \{ z \in \Omega': |1 - z_1| < t \} \). By (iii) and (iv) and the definition of \(A(\zeta, t) \) there are constants \(k_1, k_2 > 0 \) such that
\[A(\Lambda(\zeta), k_2 t) \subset A(S(\zeta, t)) \subset A(\Lambda(\zeta), k_1 t) \ \ (\forall t > 0). \]

Now the sets \(\varphi_\zeta(\Delta) \) vary continuously with \(\zeta \in \partial \Omega \) ([L1, Proposition 11; A, Lemma 1.9]), so we may assume that \(k_1, k_2 \) are independent of \(\zeta \), and we are done. \(\square \)

Our main theorem is as follows.
Theorem 7. If Ω is a bounded, strongly convex domain in \mathbb{C}^N ($N \geq 2$) with C^∞ boundary, and if $\phi: \Omega \to \Omega$ is homomorphic, then C_ϕ maps $H^p(\Omega)$ boundedly into $A^{p,N-2}(\Omega)$, for each $0 < p < \infty$.

Proof. We wish to show that there exists $C < \infty$ so that
\[
\int_\Omega |f \circ \phi(z)|^p \, d\lambda_N^N(z) \leq C \int_\Omega |f|^p \, d\sigma_\Omega,
\]
whenever $f \in H^p(\Omega)$. By Hormander's Carleson measure theorem ([H, Theorem 4.3]) it suffices to show that there exists $C' < \infty$ satisfying
\[
(*) \quad \lambda_N^N - 2 A(\zeta, t) \leq C't^N
\]
for all $\zeta \in \partial \Omega$, $t > 0$. Lemma 6 shows that we may replace $A(\zeta, t)$ in $(*)$ by $S(\zeta, t)$, and then the result follows from Proposition 4. \(\Box\)

4. Maps into admissible regions

In Theorem 2.2 of [M] it was shown that if the holomorphic map $\phi: B_N \to B_N$ has $\phi(B_N)$ contained in a Koranyi approach region of sufficiently small aperture (depending on the dimension N), then C_ϕ will be compact on $H^p(B_N)$; moreover, this result is sharp in a natural sense. In this section we give a theorem in the same spirit for holomorphic maps of a bounded strongly convex domain Ω with C^∞ boundary. As the ideas are similar to those in the last section we will omit some details of the arguments.

Analogous to Lemma 3 in §3 we begin with a one variable result, which considers maps which take A into a non-tangential approach region in A.

Lemma 8 [M, Lemma 2.3]. If $\gamma: \Delta \to A$ is holomorphic with $\gamma(0) = 0$ and $\gamma(\Delta) \subseteq \{ z \in A: |1 - z| < \alpha(1 - |z|) \}$, then there exists $C < \infty$ depending only on α so that
\[
\sigma_\Delta(\gamma^{-1}S(1, t)) \leq Ct^b,
\]
where $b = \frac{\pi}{2\cos^{-1}(1/\alpha)}$. In particular C_γ will be compact (for all $\alpha > 1$).

Recall that if we fix a base point z_0 in our strongly convex domain Ω and consider any extremal map $\varphi: \Delta \to \Omega$ with $\varphi(0) = z_0$, then Lemma 2 guarantees that $d_\Omega(\varphi(\lambda)) \leq c_1(1 - |\lambda|)$ for all $\lambda \in \Delta$, where c_1 is a finite constant not depending on a particular map φ. By Theorem 5 there is a positive constant c_2 such that $d_\Omega(z) \leq c_2d_\Omega(p(z))$ for every $z \in \Omega$, where p is the retraction associated with φ. Just as in the proof of Lemma 6, c_2 is independent of $\varphi(1)$. Thus
\[
d_\Omega(z) \leq c_1c_2(1 - |\varphi^{-1} \circ p(z)|)
\]
for all z in Ω. For $\zeta \in \partial \Omega$, define approach regions $D_\alpha(\zeta)$ by
\[
D_\alpha(\zeta) = \{ z \in \Omega: |1 - \varphi_\zeta^{-1} \circ p_\zeta(z)| < \alpha d_\Omega(z) \}.
\]
Notice that by (4.1) $D_\alpha(\zeta)$ is empty for $\alpha < \frac{1}{c_1c_2}$.

Theorem 9. Let Ω be a smooth, strongly convex bounded domain. There exist positive constants α_0, α_1 (which depend on Ω, a chosen base point z_0 in Ω, and for α_1 explicitly on the dimension N) so that for each $\zeta \in \partial \Omega$ we have:

1. $D_\alpha(\zeta)$ is empty for $\alpha < \alpha_0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(2) If $\phi(\Omega) \subset D_\alpha(\zeta)$ for $\alpha_0 < \alpha < \alpha_1$, then C_ϕ is compact from $H^p(\Omega)$ to $H^p(\Omega)$, $0 < p < \infty$.

(3) If $\phi(\Omega) \subset D_\alpha(\zeta)$, then C_ϕ is bounded from $H^p(\Omega)$ to $H^p(\Omega)$, $0 < p < \infty$.

Sketch of proof. We have already observed (1) holds when $\alpha_0 = \frac{1}{c_1 c_2}$. By a recent theorem of Li and Russo [LR] and Lemma 6, C_ϕ is compact from $H^p(\Omega)$ to $H^p(\Omega)$ if

$$\sigma_{\Omega} \phi^{-1} S(\eta, t) = o(t^N)$$

as $t \to 0$, uniformly in $\eta \in \partial \Omega$; and C_ϕ is bounded from $H^p(\Omega)$ to $H^p(\Omega)$ when

$$\sigma_{\Omega} \phi^{-1} S(\eta, t) = O(t^N) \quad \forall t > 0, \eta \in \partial \Omega.$$

Thus (2) follows if $\alpha \in (\alpha_0, \alpha_1)$ and $\phi(\Omega) \subset D_\alpha(\zeta) \Rightarrow \sigma_{\Omega} \phi^{-1} S(\eta, t) = o(t^N)$, and (3) follows if $\phi(\Omega) \subset D_\alpha(\zeta) \Rightarrow \sigma_{\Omega} \phi^{-1} S(\eta, t) = O(t^N)$. Here we are identifying the map ϕ with its extension a.e. to $\partial \Omega$ along inner normal vectors ([K, Proposition 8.5.1]). This was also implicit in Lemma 8.

We first consider the process of estimating $\sigma_{\Omega} \phi^{-1} S(\eta, t)$ when $\eta = \zeta$ and $\phi(\Omega) \subset D_\alpha(\zeta)$. Exactly as in the proof of Proposition 4 define maps $\tau_x : \Delta \to \Delta (x \in \partial \Omega)$ by $\tau_x = \varphi^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x$. We have $\tau_x(0) = 0$, and by hypothesis and (4.1),

$$|1 - \tau_x(\lambda)| \leq c_1 c_2 \alpha(1 - |\varphi^{-1} \circ p_{\zeta} \circ \phi \circ \varphi_x(\lambda)|)$$

which says $\tau_x(\Delta) \subseteq \{\lambda \in \Delta : |1 - \lambda| \leq c_1 c_2 \alpha(1 - |\lambda|)\}$. By Lemma 8

$$\sigma_{\Delta} \tau_x^{-1} S(1, t) \leq Ct^b,$$

where C depends on $c_1 c_2 \alpha$ and $b = \pi/(2 \cos^{-1}(1/c_1 c_2 \alpha))$.

By Lemma 1,

$$\sigma_{\Omega} (\phi^{-1} S(\zeta, t) \cap \partial \Omega) \equiv \sigma_{\Omega}(A) \leq c \int_{\partial \Omega} \int_0^{2\pi} \chi_A \circ \varphi(x)(e^{i\theta}) \ d\theta \ d\sigma_{\Omega}(x) \leq Ct^b,$$

since $\chi_A \circ \varphi(x)(e^{i\theta}) = 1 \Leftrightarrow |1 - \tau_x(e^{i\theta})| \leq t$.

Now set $\alpha_1 = \frac{1}{c_1 c_2} \sec^2 \frac{\pi}{2N}$. If $\phi(\Omega) \subset D_\alpha(\zeta)$ where $\alpha < \alpha_1$, then $b > N$ and the above calculation shows $\sigma_{\Omega} (\phi^{-1} S(\zeta, t) \cap \partial \Omega) = o(t^N)$ while if $\phi(\Omega) \subset D_{\alpha_1}(\zeta)$ we have

$$\sigma_{\Omega} (\phi^{-1} S(\zeta, t) \cap \partial \Omega) = O(t^N).$$

To obtain these same estimates for

$$\sigma_{\Omega} (\phi^{-1} S(\eta, t) \cap \partial \Omega)$$

where $\eta \in \partial \Omega$ is arbitrary, we observe the following: there is a constant k_1, independent of η and t, so that if $S(\eta, t) \cap D_{\alpha}(\zeta)$ is non-empty, then $S(\zeta, k_1 t) \supseteq S(\eta, t)$. To see this first notice that there is a constant k_2 (depending only on Ω) so that if $S(\eta, t)$ and $S(\zeta, t)$ intersect, then $S(\zeta, k_2 t) \supseteq S(\eta, t)$ (see, for example, [H, p. 73] where the analogous property is proved for the comparable
sets $A(\zeta, t)$. Now observe that if $z \in S(\eta, t) \cap D_{\alpha}(\zeta)$, then $z \in S(\zeta, k_3at)$ for some constant k_3 and therefore $S(\eta, t) \subseteq S(\zeta, k_2k_3at) \equiv S(\zeta, k_1t)$. Thus

$$
\sigma_\Omega(\phi^{-1}S(\eta, t) \cap \partial \Omega) \leq \sigma_\Omega(\phi^{-1}S(\zeta, k_1t) \cap \partial \Omega) \leq c(k_1t)^b = c't^b,
$$

with b as before, as desired. □

In the case $\Omega = B_N$ and $z_0 = 0$ both c_1 and c_2 can be taken to be 1 and the regions $D_\alpha(\zeta)$ are the usual Koranyi approach regions in B:

$$
D_\alpha(\zeta) = \{z \in B: |1 - \langle z, \zeta \rangle| < \alpha(1 - |z|)\}.
$$

In this setting Theorem 9 becomes exactly Theorem 2.2 of [M], with $\alpha_0 = 1$ and $\alpha_1 = \sec \frac{\pi}{2N}$.

We finish with some brief remarks on examples. Consider the map $\phi: B_N \to B_N$ defined by

$$
\phi(z_1, z_2, \ldots, z_N) = (Nz_1z_2\cdots z_N, 0').
$$

A direct computation ([MS, p. 904]) shows that for t small

$$
\lambda_\beta^\alpha(\phi^{-1}(S(\epsilon_1, t))^t) \approx t^{\alpha + \frac{(N-1)}{2} + 2},
$$

where $\epsilon_1 = (1, 0') \in \partial B_N$.

Thus in this example C_ϕ is not bounded from $H^p(B_N)$ to $A^{p, \alpha}(B_N)$ for any $\alpha < \frac{N-3}{2}$ (notice that the spaces $A^{p, \alpha}(B_N)$ may be defined for any $\alpha > -1$), whereas Theorem 7 shows that C_ϕ must be bounded into $A^{p, \alpha}(B_N)$ for all $\alpha \geq N - 2$. This leads naturally to the question of whether the weight $\alpha = N - 2$ is optimal in Theorem 7. We believe it is, and in support of this we offer the following observation. For any $\phi: B_N \to B_N$ the same sort of slice integration argument used in the proof of Proposition 4 (specialized to the ball) shows that

$$
\sigma_B^{\phi^{-1}}S(\zeta, t) = O(t)
$$

for $\zeta \in \partial B_N$ and $t > 0$ (again, we identify ϕ with its a.e. radial extension to ∂B_N). Moreover, the worst case situation $\sigma_B^{\phi^{-1}}S(\zeta, t) \approx t$ can occur: if γ is a non-constant inner function on B_N with $\gamma(0) = 0$ define ϕ on B_N by $\phi = (\gamma, 0')$. Then since γ is measure-preserving as a map from ∂B_N to $\partial \Delta$, $\sigma_B^{\phi^{-1}}S(\epsilon_1, t) = t$. Unfortunately this example is not amenable to calculation of $\lambda_B^{\phi^{-1}}S(\epsilon_1, t)$ due to the bad oscillatory behavior of γ near points of ∂B_N.

We do not know if $\sigma_B^{\phi^{-1}}S(\zeta, t) \approx t$ can occur, say, with a Lip 1 mapping ϕ; such an example would give $\lambda_B^{\phi^{-1}}S(\zeta, t) \approx t^{\alpha + 2}$, which in turn would show that the exponent $\alpha = N - 2$ in Theorem 7 cannot be replaced by anything smaller.

The above inner function example can be used to show that Theorem 9 is optimal in the ball, as the relevant computations involve $\sigma_B^{\phi^{-1}}$ rather than $\lambda_B^{\phi^{-1}}$. Specifically there exist $\phi: B_N \to B_N$ with $\phi(B_N) \subset D_{\alpha_1}(\zeta)$ ($\alpha_1 = \sec \frac{\pi}{2N}$) and C_ϕ bounded but not compact from $H^p(B_N)$ to $H^p(B_N)$, and for $\beta > \alpha_1$, there exist $\phi: B_N \to B_N$ with $\phi(B_N) \subset D_{\beta}(\zeta)$ yet C_ϕ not bounded from $H^p(B_N)$ to $H^p(B_N)$. See [M] for the details.
REFERENCES

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF RICHMOND, RICHMOND, VIRGINIA 23173

Current address: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NORTH CAROLINA 27599

Current address: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: pmercer@math.purdue.edu