A constraint on the existence of simple torsion free Lie modules
HTML articles powered by AMS MathViewer
- by Daniel Britten, Frank Lemire and Vahid Tarokh
- Proc. Amer. Math. Soc. 123 (1995), 2315-2321
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246518-1
- PDF | Request permission
Abstract:
For any simple Lie algebra L with Cartan subalgebra H the classification of all simple H-diagonalizable L-modules having a finite-dimensional weight space is known to depend on determining the simple torsion-free L-modules of finite degree. It is further known that the only simple Lie algebras which admit simple torsion-free modules of finite degree are those of types ${A_n}$ and ${C_n}$. For the case of ${A_n}$ we show that there are no simple torsion-free ${A_n}$-modules of degree k for $n \geq 4$ and $2 \leq k \leq n - 2$. We conclude with some examples showing that there exist simple torsion-free ${A_n}$-modules of degrees $1,n - 1$, and n.References
- G. Benkart, D. J. Britten, and F. W. Lemire, On the tensor product of pointed torsion free and simple finite dimensional ${A_n}$ modules (in progress).
- D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a $1$-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), no. 2, 683–697. MR 869228, DOI 10.1090/S0002-9947-1987-0869228-9 —, On basic cycles of ${A_n},{B_n},{C_n}$ and ${D_n}$, Canad. J. Math. XXXVII (1985), 122-140. —, Irreducible representations of ${A_n}$ with a 1-dimensional weight space, Trans. Amer. Math. Soc. 272 (1982), 509-540.
- S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc. 322 (1990), no. 2, 757–781. MR 1013330, DOI 10.1090/S0002-9947-1990-1013330-8
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2315-2321
- MSC: Primary 17B10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246518-1
- MathSciNet review: 1246518