On submanifolds with harmonic mean curvature
HTML articles powered by AMS MathViewer
- by Manuel Barros and Oscar J. Garay
- Proc. Amer. Math. Soc. 123 (1995), 2545-2549
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254831-7
- PDF | Request permission
Abstract:
The classification of curves in ${E^m}$ with harmonic mean curvature vector field in the normal bundle is obtained and then it is used to obtain some applications.References
- Bang-Yen Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169–188. MR 1143504
- Bang-Yen Chen and Leopold Verstraelen, Differential geometry of Laplace transformations, Geometry and topology of submanifolds, IV (Leuven, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 51–73. MR 1185716
- Ivko Dimitrić, Submanifolds of $E^m$ with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 53–65. MR 1166218
- U. Pinkall, Hopf tori in $S^3$, Invent. Math. 81 (1985), no. 2, 379–386. MR 799274, DOI 10.1007/BF01389060
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2545-2549
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254831-7
- MathSciNet review: 1254831