Bounds for the Betti numbers of generalized Cohen-Macaulay ideals
HTML articles powered by AMS MathViewer
- by Lê Tuan Hoa and Rosa M. Miró-Roig
- Proc. Amer. Math. Soc. 123 (1995), 2397-2405
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254842-1
- PDF | Request permission
Abstract:
Upper bounds for the Betti numbers of generalized Cohen-Macaulay ideals are given. In particular, for the case of non-degenerate, reduced and irreducible projective curves we get an upper bound which only depends on their degree.References
- Shalom Eliahou and Michel Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), no. 1, 1–25. MR 1037391, DOI 10.1016/0021-8693(90)90237-I
- Juan Elías, Lorenzo Robbiano, and Giuseppe Valla, Number of generators of ideals, Nagoya Math. J. 123 (1991), 39–76. MR 1126182, DOI 10.1017/S0027763000003640
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Lê Tuấn Hoa, Bounds for the number of generators of generalized Cohen-Macaulay ideals, J. Algebra 178 (1995), no. 1, 302–316. MR 1358268, DOI 10.1006/jabr.1995.1351
- Le Tuan Hoa, Jürgen Stückrad, and Wolfgang Vogel, Towards a structure theory for projective varieties of $\textrm {degree}=\textrm {codimension}+2$, J. Pure Appl. Algebra 71 (1991), no. 2-3, 203–231. MR 1117635, DOI 10.1016/0022-4049(91)90148-U
- Judith D. Sally, Numbers of generators of ideals in local rings, Marcel Dekker, Inc., New York-Basel, 1978. MR 0485852
- Jürgen Stückrad and Wolfgang Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin, 1986. An interaction between algebra, geometry and topology. MR 881220, DOI 10.1007/978-3-662-02500-0
- G. Valla, On the Betti numbers of perfect ideals, Compositio Math. 91 (1994), no. 3, 305–319. MR 1273653
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2397-2405
- MSC: Primary 13H10; Secondary 13D02, 13D40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254842-1
- MathSciNet review: 1254842