A residue map and its applications to some one-dimensional rings
HTML articles powered by AMS MathViewer
- by I-Chiau Huang
- Proc. Amer. Math. Soc. 123 (1995), 2369-2372
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254843-3
- PDF | Request permission
Abstract:
A residue map is used to study canonical modules of the ring $k[[{X^{{t_1}}}, \ldots ,{X^{{t_n}}}]]$. A simple proof of a well-known numerical criterion for $k[[{X^{{t_1}}}, \ldots ,{X^{{t_n}}}]]$ to be Gorenstein is given.References
- Margret Engelken, Grundtatsachen über Cohen-Macaulay-Moduln, Der kanonische Modul eines Cohen-Macaulay-Rings (Sem. Lokale Kohomologietheorie von Grothendieck, Univ. Regensburg, Regensburg, 1970/1971), Lecture Notes in Math., Vol. 238, Springer, Berlin, 1971, pp. 1–16, 103 (German). MR 0476726
- J. Herzog and E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension $1$, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. (1971), 27–67 (German). MR 0291149
- I-Chiau Huang, Pseudofunctors on modules with zero-dimensional support, Mem. Amer. Math. Soc. 114 (1995), no. 548, xii+53. MR 1239604, DOI 10.1090/memo/0548
- Joachim Jäger, Längenberechnung und kanonische Ideale in eindimensionalen Ringen, Arch. Math. (Basel) 29 (1977), no. 5, 504–512 (German). MR 463156, DOI 10.1007/BF01220445
- Ernst Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748–751. MR 265353, DOI 10.1090/S0002-9939-1970-0265353-7
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2369-2372
- MSC: Primary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254843-3
- MathSciNet review: 1254843