Variation of the discrete eigenvalues of normal operators
HTML articles powered by AMS MathViewer
- by L. Elsner and S. Friedland
- Proc. Amer. Math. Soc. 123 (1995), 2511-2517
- DOI: https://doi.org/10.1090/S0002-9939-1995-1257103-X
- PDF | Request permission
Abstract:
The Hoffman-Wielandt inequality, which gives a bound for the distance between the spectra of two normal matrices, is generalized to normal operators A, B on a separable Hilbert space, such that $A - B$ is Hilbert-Schmidt.References
- I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365–371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
- Rajendra Bhatia and Tirthankar Bhattacharyya, A generalization of the Hoffman-Wielandt theorem, Linear Algebra Appl. 179 (1993), 11–17. MR 1200140, DOI 10.1016/0024-3795(93)90318-I
- Rajendra Bhatia and Ludwig Elsner, The Hoffman-Wielandt inequality in infinite dimensions, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 3, 483–494. MR 1314392, DOI 10.1007/BF02867116
- Rajendra Bhatia and Kalyan B. Sinha, A unitary analogue of Kato’s theorem on variation of discrete spectra, Lett. Math. Phys. 15 (1988), no. 3, 201–204. MR 948353, DOI 10.1007/BF00398588
- James Alan Cochran and Erold W. Hinds, Improved error bounds for the eigenvalues of certain normal operators, SIAM J. Numer. Anal. 9 (1972), 446–453. MR 324459, DOI 10.1137/0709040
- L. Elsner, A note on the Hoffman-Wielandt theorem, Linear Algebra Appl. 182 (1993), 235–237. MR 1207084, DOI 10.1016/0024-3795(93)90501-E
- Shmuel Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17 (1977), no. 1, 15–51. MR 472861, DOI 10.1016/0024-3795(77)90039-8
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37–39. MR 52379, DOI 10.1215/S0012-7094-53-02004-3
- Tosio Kato, Variation of discrete spectra, Comm. Math. Phys. 111 (1987), no. 3, 501–504. MR 900507, DOI 10.1007/BF01238911
- John von Neumann, Collected works. Vol. IV: Continuous geometry and other topics, Pergamon Press, Oxford-London-New York-Paris, 1962. General editor: A. H. Taub. MR 0157874
- Dan Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), no. 1, 3–37. MR 553861 H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2511-2517
- MSC: Primary 47A55; Secondary 47B10, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-1995-1257103-X
- MathSciNet review: 1257103