Infinite differentiability in polynomially bounded o-minimal structures
HTML articles powered by AMS MathViewer
- by Chris Miller
- Proc. Amer. Math. Soc. 123 (1995), 2551-2555
- DOI: https://doi.org/10.1090/S0002-9939-1995-1257118-1
- PDF | Request permission
Abstract:
Infinitely differentiable functions definable in a polynomially bounded o-minimal expansion $\Re$ of the ordered field of real numbers are shown to have some of the nice properties of real analytic functions. In particular, if a definable function $f:{\mathbb {R}^n} \to \mathbb {R}$ is ${C^N}$ at $a \in {\mathbb {R}^n}$ for all $N \in \mathbb {N}$ and all partial derivatives of f vanish at a, then f vanishes identically on some open neighborhood of a. Combining this with the Abhyankar-Moh theorem on convergence of power series, it is shown that if $\Re$ is a polynomially bounded o-minimal expansion of the field of real numbers with restricted analytic functions, then all ${C^\infty }$ functions definable in $\Re$ are real analytic, provided that this is true for all definable functions of one variable.References
- S. S. Abhyankar and T. T. Moh, A reduction theorem for divergent power series, J. Reine Angew. Math. 241 (1970), 27–33. MR 259158
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342, DOI 10.1007/BF02699126
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- J. Denef and L. van den Dries, $p$-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, DOI 10.2307/1971463
- Lou van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 189–193. MR 854552, DOI 10.1090/S0273-0979-1986-15468-6
- Chris Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), no. 1, 257–259. MR 1195484, DOI 10.1090/S0002-9939-1994-1195484-5
- Chris Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994), no. 1, 79–94. MR 1278550, DOI 10.1016/0168-0072(94)90048-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2551-2555
- MSC: Primary 03C65; Secondary 03C50, 26E10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1257118-1
- MathSciNet review: 1257118