The Lavrentiev phenomenon and the obstacle problem for the Dirichlet integral
HTML articles powered by AMS MathViewer
- by T. Kilpeläinen and P. Lindqvist
- Proc. Amer. Math. Soc. 123 (1995), 2459-2464
- DOI: https://doi.org/10.1090/S0002-9939-1995-1264819-8
- PDF | Request permission
Abstract:
It is shown that the Lavrentiev phenomenon can occur for the Dirichlet integral, when the obstacle problem is considered.References
- M. Brelot, Éléments de la théorie classique du potential, 2e édition, Univ. Paris, Paris, 1961.
- J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388. MR 801585, DOI 10.1007/BF00276295
- Giuseppe Buttazzo and Victor J. Mizel, Interpretation of the Lavrentiev phenomenon by relaxation, J. Funct. Anal. 110 (1992), no. 2, 434–460. MR 1194993, DOI 10.1016/0022-1236(92)90038-K
- L. A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities, J. Analyse Math. 37 (1980), 285–295. MR 583641, DOI 10.1007/BF02797689
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5 M. Lavrentiev, Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1926), 7-28.
- Hans Lewy and Guido Stampacchia, On the smoothness of superharmonics which solve a minimum problem, J. Analyse Math. 23 (1970), 227–236. MR 271383, DOI 10.1007/BF02795502 B. Mania, Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital. 13 (1934), 147-153.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2459-2464
- MSC: Primary 49K30; Secondary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1264819-8
- MathSciNet review: 1264819