Identities for $q$-ultraspherical polynomials and Jacobi functions
HTML articles powered by AMS MathViewer
- by H. T. Koelink
- Proc. Amer. Math. Soc. 123 (1995), 2479-2487
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273504-8
- PDF | Request permission
Abstract:
A q-analogue of a result by Badertscher and Koornwinder [Canad. J. Math. 44 (1992), 750-773] relating the action of a Hahn polynomial of differential operator argument on ultraspherical polynomials to an ultraspherical polynomial of shifted order and degree is derived. The q-analogue involves q-Hahn polynomials, continuous q-ultraspherical polynomials, and a shift operator. Another limit as q tends to 1 yields an identity for Jacobi functions. Combination with another result of Badertscher and Koornwinder gives a curious formula for Jacobi functions.References
- R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, BirkhΓ€user, Basel, 1983, pp.Β 55β78. MR 820210
- Richard Askey and James Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols, SIAM J. Math. Anal. 10 (1979), no.Β 5, 1008β1016. MR 541097, DOI 10.1137/0510092
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no.Β 319, iv+55. MR 783216, DOI 10.1090/memo/0319
- Erich Badertscher and Tom H. Koornwinder, Continuous Hahn polynomials of differential operator argument and analysis on Riemannian symmetric spaces of constant curvature, Canad. J. Math. 44 (1992), no.Β 4, 750β773. MR 1178566, DOI 10.4153/CJM-1992-044-4
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884 A. ErdΓ©lyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953.
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- Mourad E. H. Ismail and James A. Wilson, Asymptotic and generating relations for the $q$-Jacobi and $_{4}\varphi _{3}$ polynomials, J. Approx. Theory 36 (1982), no.Β 1, 43β54. MR 673855, DOI 10.1016/0021-9045(82)90069-7
- H. T. Koelink, The addition formula for continuous $q$-Legendre polynomials and associated spherical elements on the $\textrm {SU}(2)$ quantum group related to Askey-Wilson polynomials, SIAM J. Math. Anal. 25 (1994), no.Β 1, 197β217. MR 1257149, DOI 10.1137/S0036141090186114 β, Askey-Wilson polynomials and the quantum $SU(2)$ group: survey and applications, Acta Appl. Math. (to appear).
- Tom Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145β159. MR 374832, DOI 10.1007/BF02386203
- Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp.Β 1β85. MR 774055
- M. Alfaro, J. S. Dehesa, F. J. MarcellΓ‘n, J. L. Rubio de Francia, and J. Vinuesa (eds.), Orthogonal polynomials and their applications, Lecture Notes in Mathematics, vol. 1329, Springer-Verlag, Berlin, 1988. MR 973417, DOI 10.1007/BFb0083349
- Tom H. Koornwinder, Jacobi functions as limit cases of $q$-ultraspherical polynomials, J. Math. Anal. Appl. 148 (1990), no.Β 1, 44β54. MR 1052043, DOI 10.1016/0022-247X(90)90026-C
- Tom H. Koornwinder, Askey-Wilson polynomials as zonal spherical functions on the $\textrm {SU}(2)$ quantum group, SIAM J. Math. Anal. 24 (1993), no.Β 3, 795β813. MR 1215439, DOI 10.1137/0524049
- A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991. Translated from the Russian. MR 1149380, DOI 10.1007/978-3-642-74748-9
- Masatoshi Noumi and Katsuhisa Mimachi, Askey-Wilson polynomials and the quantum group $\textrm {SU}_q(2)$, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no.Β 6, 146β149. MR 1065793 β, Askey-Wilson polynomials as spherical functions on $S{U_q}(2)$, Quantum Groups (P. P. Kulish, ed.), Lecture Notes in Math., vol. 1510, Springer, New York, 1992, pp. 98-103.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2479-2487
- MSC: Primary 33C45; Secondary 33D55
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273504-8
- MathSciNet review: 1273504