A counterexample to a compact embedding theorem for functions with values in a Hilbert space
HTML articles powered by AMS MathViewer
- by Stanisław Migórski
- Proc. Amer. Math. Soc. 123 (1995), 2447-2449
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273510-3
- PDF | Request permission
Abstract:
A counterexample to a compactness embedding result of Nagy is provided.References
- S. Gutman and L. W. White, The estimation of $L^\infty$ diffusion coefficients in the parabolic equations, Comput. Math. Appl. 22 (1991), no. 4-5, 125–136. Multidimensional inverse problems. MR 1127221, DOI 10.1016/0898-1221(91)90138-T
- Shou Chuan Hu, V. Lakshmikantham, and Nikolaos S. Papageorgiou, On the solution set of nonlinear evolution inclusions, Dynam. Systems Appl. 1 (1992), no. 1, 71–82. MR 1154650 E. V. Nagy, A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 22-23 (1979-80), 243-245.
- Nikolaos S. Papageorgiou, Nonlinear Volterra integrodifferential evolution inclusions and optimal control, Kodai Math. J. 14 (1991), no. 2, 254–280. MR 1123420, DOI 10.2996/kmj/1138039398
- Nikolaos S. Papageorgiou, Continuous dependence results for a class of evolution inclusions, Proc. Edinburgh Math. Soc. (2) 35 (1992), no. 1, 139–158. MR 1150960, DOI 10.1017/S001309150000540X
- Nikolaos S. Papageorgiou, A property of the solution set of nonlinear evolution inclusions with state constraints, Math. Japon. 38 (1993), no. 3, 559–569. MR 1221027
- J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. MR 895589, DOI 10.1017/CBO9781139171755 E. Zeidler, Nonlinear functional analysis and applications. II, Springer, New York, 1990.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2447-2449
- MSC: Primary 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273510-3
- MathSciNet review: 1273510