LCM-stability of power series extensions characterizes Dedekind domains
HTML articles powered by AMS MathViewer
- by John T. Condo
- Proc. Amer. Math. Soc. 123 (1995), 2333-2341
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
- PDF | Request permission
Abstract:
In this paper we prove the following main result. A (commutative integral) domain R is a Dedekind domain if and only if $R[[X]] \subset T[[X]]$ is LCM-stable for each domain T containing R as a subring.References
- Marlow Anderson and John Watkins, Coherence of power series rings over pseudo-Bezout domains, J. Algebra 107 (1987), no.Β 1, 187β194. MR 883881, DOI 10.1016/0021-8693(87)90085-8
- Jimmy T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973), 299β304. MR 316451, DOI 10.1090/S0002-9947-1973-0316451-8
- Jimmy T. Arnold, Power series rings over PrΓΌfer domains, Pacific J. Math. 44 (1973), 1β11. MR 316450, DOI 10.2140/pjm.1973.44.1
- J. T. Arnold and J. W. Brewer, When $(D[[X]])_{P[[X]]}$ is a valuation ring, Proc. Amer. Math. Soc. 37 (1973), 326β332. MR 311656, DOI 10.1090/S0002-9939-1973-0311656-X N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.
- David E. Dobbs, On locally divided integral domains and CPI-overrings, Internat. J. Math. Math. Sci. 4 (1981), no.Β 1, 119β135. MR 606662, DOI 10.1155/S0161171281000082
- David E. Dobbs, On $n$-flat modules over a commutative ring, Bull. Austral. Math. Soc. 43 (1991), no.Β 3, 491β498. MR 1107404, DOI 10.1017/S0004972700029348
- David E. Dobbs, On the criteria of D. D. Anderson for invertible and flat ideals, Canad. Math. Bull. 29 (1986), no.Β 1, 25β32. MR 824877, DOI 10.4153/CMB-1986-004-4
- Robert Gilmer, Finite element factorization in group rings, Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Okla., 1973) Lecture Notes in Pure and Applied Mathematics, Vol. 7, Dekker, New York, 1974, pp.Β 47β61. MR 0345958
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Fred Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794β799. MR 181653, DOI 10.1090/S0002-9939-1965-0181653-1
- Junro Sato and Ken-ichi Yoshida, The LCM-stability on polynomial extensions, Math. Rep. Toyama Univ. 10 (1987), 75β84. MR 918300
- Philip B. Sheldon, How changing $D[[x]]$ changes its quotient field, Trans. Amer. Math. Soc. 159 (1971), 223β244. MR 279092, DOI 10.1090/S0002-9947-1971-0279092-5
- Hirohumi Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), no.Β 2, 357β377. MR 707189
- Hirohumi Uda, $G_2$-stableness and LCM-stableness, Hiroshima Math. J. 18 (1988), no.Β 1, 47β52. MR 935880
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2333-2341
- MSC: Primary 13F05; Secondary 13F25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
- MathSciNet review: 1277104