## LCM-stability of power series extensions characterizes Dedekind domains

HTML articles powered by AMS MathViewer

- by John T. Condo
- Proc. Amer. Math. Soc.
**123**(1995), 2333-2341 - DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
- PDF | Request permission

## Abstract:

In this paper we prove the following main result. A (commutative integral) domain*R*is a Dedekind domain if and only if $R[[X]] \subset T[[X]]$ is LCM-stable for each domain

*T*containing

*R*as a subring.

## References

- Marlow Anderson and John Watkins,
*Coherence of power series rings over pseudo-Bezout domains*, J. Algebra**107**(1987), no.Β 1, 187β194. MR**883881**, DOI 10.1016/0021-8693(87)90085-8 - Jimmy T. Arnold,
*Krull dimension in power series rings*, Trans. Amer. Math. Soc.**177**(1973), 299β304. MR**316451**, DOI 10.1090/S0002-9947-1973-0316451-8 - Jimmy T. Arnold,
*Power series rings over PrΓΌfer domains*, Pacific J. Math.**44**(1973), 1β11. MR**316450**, DOI 10.2140/pjm.1973.44.1 - J. T. Arnold and J. W. Brewer,
*When $(D[[X]])_{P[[X]]}$ is a valuation ring*, Proc. Amer. Math. Soc.**37**(1973), 326β332. MR**311656**, DOI 10.1090/S0002-9939-1973-0311656-X
N. Bourbaki, - David E. Dobbs,
*On locally divided integral domains and CPI-overrings*, Internat. J. Math. Math. Sci.**4**(1981), no.Β 1, 119β135. MR**606662**, DOI 10.1155/S0161171281000082 - David E. Dobbs,
*On $n$-flat modules over a commutative ring*, Bull. Austral. Math. Soc.**43**(1991), no.Β 3, 491β498. MR**1107404**, DOI 10.1017/S0004972700029348 - David E. Dobbs,
*On the criteria of D. D. Anderson for invertible and flat ideals*, Canad. Math. Bull.**29**(1986), no.Β 1, 25β32. MR**824877**, DOI 10.4153/CMB-1986-004-4 - Robert Gilmer,
*Finite element factorization in group rings*, Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Okla., 1973) Lecture Notes in Pure and Applied Mathematics, Vol. 7, Dekker, New York, 1974, pp.Β 47β61. MR**0345958** - Robert Gilmer,
*Multiplicative ideal theory*, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR**0427289** - Irving Kaplansky,
*Commutative rings*, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR**0345945** - Fred Richman,
*Generalized quotient rings*, Proc. Amer. Math. Soc.**16**(1965), 794β799. MR**181653**, DOI 10.1090/S0002-9939-1965-0181653-1 - Junro Sato and Ken-ichi Yoshida,
*The LCM-stability on polynomial extensions*, Math. Rep. Toyama Univ.**10**(1987), 75β84. MR**918300** - Philip B. Sheldon,
*How changing $D[[x]]$ changes its quotient field*, Trans. Amer. Math. Soc.**159**(1971), 223β244. MR**279092**, DOI 10.1090/S0002-9947-1971-0279092-5 - Hirohumi Uda,
*LCM-stableness in ring extensions*, Hiroshima Math. J.**13**(1983), no.Β 2, 357β377. MR**707189** - Hirohumi Uda,
*$G_2$-stableness and LCM-stableness*, Hiroshima Math. J.**18**(1988), no.Β 1, 47β52. MR**935880**

*Commutative algebra*, Addison-Wesley, Reading, MA, 1972.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 2333-2341 - MSC: Primary 13F05; Secondary 13F25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277104-5
- MathSciNet review: 1277104