On representations of elementary subgroups of Chevalley groups over algebras
HTML articles powered by AMS MathViewer
- by Yu Chen
- Proc. Amer. Math. Soc. 123 (1995), 2357-2361
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283542-7
- PDF | Request permission
Abstract:
It is shown that every nontrivial linear or projective representation of the elementary subgroup of a Chevalley group over an algebra containing an infinite field must have degree greater than or equal to the square root of the dimension of the corresponding Chevalley-Demazure group scheme adding 1 and the equality emerges only if the Chevalley group is of type ${A_n}$ for $n \geq 1$.References
- Eiichi Abe, Chevalley groups over local rings, Tohoku Math. J. (2) 21 (1969), 474–494. MR 258837, DOI 10.2748/tmj/1178242958
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
- Yu Chen, Isomorphic Chevalley groups over integral domains, Rend. Sem. Mat. Univ. Padova 92 (1994), 231–237. MR 1320490 C. Chevalley, Certains schémas de groupes semisimples, Sém. Bourbaki Exp. 219 (1960/61).
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2357-2361
- MSC: Primary 20G35; Secondary 20G05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283542-7
- MathSciNet review: 1283542