Computing the Euler characteristic of a manifold with boundary
HTML articles powered by AMS MathViewer
- by Harold Levine
- Proc. Amer. Math. Soc. 123 (1995), 2563-2567
- DOI: https://doi.org/10.1090/S0002-9939-1995-1307546-0
- PDF | Request permission
Abstract:
Given a stable map, f, from an even-dimensional, compact manifold with boundary, M, into ${\mathbb {R}^2}$, the Euler characteristic of $M,\chi (M)$, is expressed in terms of projectivized rotation numbers of f restricted to $S(f)$, the singular curves of f, and of f restricted to $S(f|\partial M)$, the singular curves of f restricted to the boundary of M.References
- H. Levine, A. O. Petters, and J. Wambsganss, Applications of singularity theory to gravitational lensing I; Globally stable systems (in preparation).
- Harold I. Levine, Mappings of manifolds into the plane, Amer. J. Math. 88 (1966), 357–365. MR 208609, DOI 10.2307/2373199
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5
- R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43–87 (French). MR 87149, DOI 10.5802/aif.60
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2563-2567
- MSC: Primary 57R45; Secondary 57R20, 58C25, 58C27
- DOI: https://doi.org/10.1090/S0002-9939-1995-1307546-0
- MathSciNet review: 1307546