## The lifting of the UKK property from $E$ to $C_ E$

HTML articles powered by AMS MathViewer

- by Yu-Ping Hsu
- Proc. Amer. Math. Soc.
**123**(1995), 2695-2703 - DOI: https://doi.org/10.1090/S0002-9939-1995-1246527-2
- PDF | Request permission

## Abstract:

In this paper we show that ${C_E}$, the unitary matrix space associated with the symmetrically normed sequence space*E*, has the

*UKK*property for the weak operator topology if

*E*has the

*UKK*property for the pointwise convergence topology. We also prove that the quasi-normed space ${C_p} = {C_{{l_p}}}$, for $0 < p < 1$, has the

*UKK*property for the weak operator topology.

## References

- Jonathan Arazy,
*More on convergence in unitary matrix spaces*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 44–48. MR**619978**, DOI 10.1090/S0002-9939-1981-0619978-4
P. G. Dodds, T. K. Dodds, P. N. Dowling, C. J. Lennard, and F. A. Sukochev, - D. van Dulst and Brailey Sims,
*Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK)*, Banach space theory and its applications (Bucharest, 1981) Lecture Notes in Math., vol. 991, Springer, Berlin-New York, 1983, pp. 35–43. MR**714171** - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR**0188745** - I. C. Gohberg and M. G. Kreĭn,
*Introduction to the theory of linear nonselfadjoint operators*, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR**0246142**, DOI 10.1090/mmono/018 - I. C. Gohberg and A. S. Markus,
*Some relations between eigenvalues and matrix elements of linear operators*, Mat. Sb. (N.S.)**64 (106)**(1964), 481–496 (Russian). MR**0170218** - Robert C. James,
*Uniformly non-square Banach spaces*, Ann. of Math. (2)**80**(1964), 542–550. MR**173932**, DOI 10.2307/1970663 - Chris Lennard,
*${\scr C}_1$ is uniformly Kadec-Klee*, Proc. Amer. Math. Soc.**109**(1990), no. 1, 71–77. MR**943795**, DOI 10.1090/S0002-9939-1990-0943795-4 - Chris Lennard,
*A new convexity property that implies a fixed point property for $L_1$*, Studia Math.**100**(1991), no. 2, 95–108. MR**1121710**, DOI 10.4064/sm-100-2-95-108 - Joram Lindenstrauss and Lior Tzafriri,
*Classical Banach spaces. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR**0500056**, DOI 10.1007/978-3-642-66557-8 - Charles A. McCarthy,
*$c_{p}$*, Israel J. Math.**5**(1967), 249–271. MR**225140**, DOI 10.1007/BF02771613 - Robert Schatten,
*Norm ideals of completely continuous operators*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR**0119112**, DOI 10.1007/978-3-642-87652-3 - Barry Simon,
*Trace ideals and their applications*, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR**541149**, DOI 10.1007/BFb0064579 - B. Simon,
*Convergence in trace ideals*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 39–43. MR**619977**, DOI 10.1090/S0002-9939-1981-0619977-2

*A uniform Kadec-Klee property for symmetric operator space*, preprint, 1992.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 2695-2703 - MSC: Primary 46B45; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246527-2
- MathSciNet review: 1246527