Morita equivalence of twisted crossed products
HTML articles powered by AMS MathViewer
- by Huu Hung Bui
- Proc. Amer. Math. Soc. 123 (1995), 2771-2776
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260162-1
- PDF | Request permission
Abstract:
We introduce a natural notion of strong Morita equivalence of twisted actions of a locally compact group on ${C^ \ast }$-algebras, and then show that the corresponding twisted crossed products are strongly Morita equivalent. This result is a generalization of the result of Curto, Muhly and Williams concerning strong Morita equivalence of crossed products by actions.References
- Saad Baaj and Georges Skandalis, $C^\ast$-algĂšbres de Hopf et thĂ©orie de Kasparov Ă©quivariante, $K$-Theory 2 (1989), no. 6, 683â721 (French, with English summary). MR 1010978, DOI 10.1007/BF00538428
- Nicolas Bourbaki, Espaces vectoriels topologiques. Chapitres 1 Ă 5, New edition, Masson, Paris, 1981 (French). ĂlĂ©ments de mathĂ©matique. [Elements of mathematics]. MR 633754
- Huu Hung Bui, Morita equivalence of twisted crossed products by coactions, J. Funct. Anal. 123 (1994), no. 1, 59â98. MR 1279296, DOI 10.1006/jfan.1994.1083 â, Full coactions on Hilbert ${C^\ast }$-modules, J. Austral. Math, (to appear).
- F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), no. 2, 289â306. MR 748991, DOI 10.1112/plms/s3-49.2.289
- RaĂșl E. Curto, Paul S. Muhly, and Dana P. Williams, Cross products of strongly Morita equivalent $C^{\ast }$-algebras, Proc. Amer. Math. Soc. 90 (1984), no. 4, 528â530. MR 733400, DOI 10.1090/S0002-9939-1984-0733400-1
- N. Dinculeanu, Integration on locally compact spaces, Noordhoff International Publishing, Leiden, 1974. Translated from the Romanian. MR 0360981
- Siegfried Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization trick, J. London Math. Soc. (2) 50 (1994), no. 1, 170â186. MR 1277761, DOI 10.1112/jlms/50.1.170
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191â250. MR 493349, DOI 10.1007/BF02392308
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 293â311. MR 1002543, DOI 10.1017/S0305004100078129
- Iain Raeburn, Induced $C^*$-algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (1988), no. 3, 369â387. MR 936317, DOI 10.1007/BF01456331
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176â257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
- Marc A. Rieffel, $C^{\ast }$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415â429. MR 623572, DOI 10.2140/pjm.1981.93.415 â, Applications of strong Morita equivalence to transformation group ${C^\ast }$-algebras, Operator Algebras and Applications, Proc. Sympos. Pure Math., vol. 38, Part I, Amer. Math. Soc., Providence, RI, 1982, pp. 299-310.
- Jonathan Rosenberg, Appendix to: âCrossed products of UHF algebras by product type actionsâ [Duke Math. J. 46 (1979), no. 1, 1â23; MR 82a:46063 above] by O. Bratteli, Duke Math. J. 46 (1979), no. 1, 25â26. MR 523599
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2771-2776
- MSC: Primary 46L55; Secondary 46L40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260162-1
- MathSciNet review: 1260162