## Hyperplane sections of arithmetically Cohen-Macaulay curves

HTML articles powered by AMS MathViewer

- by Charles H. Walter
- Proc. Amer. Math. Soc.
**123**(1995), 2651-2656 - DOI: https://doi.org/10.1090/S0002-9939-1995-1260185-2
- PDF | Request permission

## Abstract:

We show that for every $r \geq 4$ there exists a ${d_r}$ such that for all $d \geq {d_r}$ a general set of*r*points in ${{\mathbf {P}}^{r - 1}}$ is not a hyperplane section of an arithmetically Cohen-Macaulay local complete intersection curve in ${{\mathbf {P}}^r}$. Explicit values for the bound ${d_r}$ are given. In particular, for $r \geq 12$ we have ${d_r} = r + 3$, and this bound is exact.

## References

- Edoardo Ballico,
*Points not as hyperplane sections of projectively normal curves*, Proc. Amer. Math. Soc.**112**(1991), no. 2, 343–346. MR**1052870**, DOI 10.1090/S0002-9939-1991-1052870-9 - Edoardo Ballico and Juan Migliore,
*Smooth curves whose hyperplane section is a given set of points*, Comm. Algebra**18**(1990), no. 9, 3015–3040. MR**1063348**, DOI 10.1080/00927879008824058 - Luca Chiantini and Ferruccio Orecchia,
*Plane sections of arithmetically normal curves in $\textbf {P}^3$*, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 32–42. MR**1023388**, DOI 10.1007/BFb0085922 - Lawrence Ein, David Eisenbud, and Sheldon Katz,
*Varieties cut out by quadrics: scheme-theoretic versus homogeneous generation of ideals*, Algebraic geometry (Sundance, UT, 1986) Lecture Notes in Math., vol. 1311, Springer, Berlin, 1988, pp. 51–70. MR**951640**, DOI 10.1007/BFb0082908 - Laurent Gruson and Christian Peskine,
*Genre des courbes de l’espace projectif*, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 31–59 (French). MR**527229** - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - Les Reid and Leslie G. Roberts,
*Intersection points of seminormal configurations of lines*, Algebraic $K$-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989) Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 151–163. MR**1156509**, DOI 10.1090/conm/126/00511 - Charles H. Walter,
*Hyperplane sections of space curves of small genus*, Comm. Algebra**22**(1994), no. 13, 5167–5174. MR**1291026**, DOI 10.1080/00927879408825126

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 2651-2656 - MSC: Primary 14H99; Secondary 14M10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260185-2
- MathSciNet review: 1260185