On residually finite-dimensional $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by R. J. Archbold
- Proc. Amer. Math. Soc. 123 (1995), 2935-2937
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301006-9
- PDF | Request permission
Abstract:
Exel and Loring have listed several conditions that are equivalent to the residual finite-dimensionality of a ${C^ \ast }$-algebra. We review and extend this list.References
- R. J. Archbold and J. S. Spielberg, Upper and lower multiplicity for irreducible representations of ${C^\ast }$-algebras, II, preprint.
- C. J. K. Batty and R. J. Archbold, On factorial states of operator algebras. II, J. Operator Theory 13 (1985), no. 1, 131–142. MR 768307
- Klaus Bichteler, A generalization to the non-separable case of Takesaki’s duality theorem for $C^{\ast }$-algebras, Invent. Math. 9 (1969/70), 89–98. MR 253060, DOI 10.1007/BF01389891
- Man Duen Choi, The full $C^{\ast }$-algebra of the free group on two generators, Pacific J. Math. 87 (1980), no. 1, 41–48. MR 590864, DOI 10.2140/pjm.1980.87.41
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Ruy Exel and Terry A. Loring, Finite-dimensional representations of free product $C^*$-algebras, Internat. J. Math. 3 (1992), no. 4, 469–476. MR 1168356, DOI 10.1142/S0129167X92000217
- L. Terrell Gardner, On the “third definition” of the topology on the spectrum of a $C^{\ast }$-algebra, Canadian J. Math. 23 (1971), 445–450. MR 281011, DOI 10.4153/CJM-1971-047-1
- K. R. Goodearl and P. Menal, Free and residually finite-dimensional $C^*$-algebras, J. Funct. Anal. 90 (1990), no. 2, 391–410. MR 1052340, DOI 10.1016/0022-1236(90)90089-4
- B. E. Johnson, Near inclusions for subhomogeneous $C^*$-algebras, Proc. London Math. Soc. (3) 68 (1994), no. 2, 399–422. MR 1253509, DOI 10.1112/plms/s3-68.2.399
- Vladimir G. Pestov, Operator spaces and residually finite-dimensional $C^*$-algebras, J. Funct. Anal. 123 (1994), no. 2, 308–317. MR 1283030, DOI 10.1006/jfan.1994.1090
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2935-2937
- MSC: Primary 46L05; Secondary 46L30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301006-9
- MathSciNet review: 1301006