Global attractivity for a population model with time delay
HTML articles powered by AMS MathViewer
- by Joseph W.-H. So and J. S. Yu
- Proc. Amer. Math. Soc. 123 (1995), 2687-2694
- DOI: https://doi.org/10.1090/S0002-9939-1995-1317052-5
- PDF | Request permission
Abstract:
In this paper we give a sufficient condition which guarantees the global attractivity of the zero solution of a population growth equation.References
- G.E. Hutchinson, Circular causal systems in ecology, Ann. New York Acad. Sci. 50 (1948), 221-246.
- Yang Kuang, Delay differential equations with applications in population dynamics, Mathematics in Science and Engineering, vol. 191, Academic Press, Inc., Boston, MA, 1993. MR 1218880
- Jitsuro Sugie, On the stability for a population growth equation with time delay, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 179–184. MR 1149993, DOI 10.1017/S0308210500015079
- E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66–87. MR 72363, DOI 10.1515/crll.1955.194.66
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2687-2694
- MSC: Primary 34K20; Secondary 92D25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1317052-5
- MathSciNet review: 1317052