A NOTE ON COHOMOLOGICAL DIMENSION
OF APPROXIMATE MOVABLE SPACES

TADASHI WATANABE

(Communicated by James E. West)

Abstract. We show that any approximate movable compact metric space X satisfies the equality $\dim X = \dim_2 X$ without finite dimensional condition. Thus there is no approximate movable compact metric space X with $\dim X = \infty$ and $\dim_2 X < \infty$. Since ANRs and some generalized ANRs are approximate movable, they satisfy the above equality.

All spaces are compact metric and all polyhedra are finite. Let X be a space. By $\dim X$ and $\dim_2 X$ we denote covering dimension and integral cohomological dimension of X, respectively. It is well known (the fundamental cohomological dimension theorem) that if $\dim X$ is finite, then $\dim X = \dim_2 X$ (see P. S. Aleksandrov [1]). Recently, A. N. Dranishnikov [5] constructed a space X with $\dim X = \infty$ and $\dim_2 X = 3$. So his example means that the equality $\dim X = \dim_2 X$ does not hold without finite dimensional condition. In this note we investigate this equality for some nice spaces:

Theorem 1. If X is approximate movable, then $\dim X = \dim_2 X$ holds.

Corollary 2. There does not exist an approximate movable space X with $\dim X = \infty$ and $\dim_2 X < \infty$.

In [9] the author introduced an approximate shape theory and approximate movability which is an approximate invariant property.

Let X be a space, and let $\mathcal{H} = \{P_i, f_{ij}, N\}$ be an inverse sequence of polyhedra P_i and maps $f_{ij}: X_j \rightarrow X_i$, $i < j$, such that X is an inverse limit of \mathcal{H}. Lemma (1.6) of [9, II] means the following:

Lemma 3. X is approximate movable if and only if for each integer k and each $\varepsilon > 0$ there is an integer $j > k$ with the following property: For each integer $i \geq k$ there is a map $r_i: X_j \rightarrow X_i$ such that $f_{ik}r_i$ and f_{jk} are ε-near.

For our proof we need some characterizations of dimension and cohomological dimension. For any integer n and any triangulation K, $K^{(n)}$ denotes the n-th skeleton of K and $|K|$ denotes the realization of K. Lemmas 4 and 5 are Theorem 4.1 and Theorem 5.1 of [8].

Received by the editors November 15, 1993.

1991 Mathematics Subject Classification. Primary 54C55, 54C56, 54F45.

Key words and phrases. Covering dimension, cohomological dimension, ANR, generalized ANR, approximate movability.

©1995 American Mathematical Society

2883
Lemma 4. \(X \) has \(\dim X \leq n \) if and only if for each integer \(k \) and each \(\varepsilon > 0 \) there exist an integer \(j > k \), a triangulation \(L_k \) of \(P_k \), and a map \(g_{jk}: P_j \to |L_k(n)| \) which is \(\varepsilon \)-close to \(f_{jk} \).

Lemma 5 (R. D. Edwards). \(X \) has \(\dim_Z X \leq n \) if and only if, given an integer \(i \geq 1 \), for each integer \(k \) and each \(\varepsilon > 0 \) there is a triangulation \(L_k \) of \(P_k \) and an integer \(j > k \) such that for any triangulation \(L_j \) of \(P_j \) there is a map \(g_{jk}: |L_j(n+i)| \to |L_k(n)| \) which is \(\varepsilon \)-close to the restriction of \(f_{jk} \).

Proof of Theorem 1. First, we show the inequality \(\dim X \leq \dim_Z X \). If \(\dim_Z X = \infty \), there is nothing to prove, so we consider the case \(\dim_Z X \leq n < \infty \) for some integer \(n \). Take any integer \(k \) and any \(\varepsilon > 0 \). Put \(\delta = \varepsilon / 3 \). Since \(X \) is approximate movable, by Lemma 3 there is an integer \(j > k \) satisfying

(1) for each \(i \geq k \) there is a map \(r_i: P_j \to P_i \) such that \(f_{ik}r_i \) and \(f_{jk} \) are \(\delta \)-near.

Since \(P_j \) is a finite polyhedron, take a triangulation \(L_j \) of \(P_j \) and let \(s = \dim L_j < \infty \). Since \(\dim_Z X \leq n < \infty \), by Lemma 5 there exist a triangulation \(L_k \) of \(P_k \) and an integer \(i > k \) such that

(2) for any triangulation \(L_i \) of \(P_i \) there is a map \(g_{ik}: |L_i(n+i)| \to |L_k(n)| \) which is \(\delta \)-close to the restriction of \(f_{ik} \).

Since \(f_{ik}: X_i \to X_k \) is uniform, there is an \(\eta > 0 \) such that if points \(x \) and \(x' \) in \(X_i \) are \(\eta \)-near, then \(f_{ik}(x) \) and \(f_{ik}(x') \) are \(\delta \)-near. Take a triangulation \(L_i \) of \(P_i \) such that any simplex of \(L_i \) has a diameter \(< \eta / 2 \). By the simplicial approximation theorem there are a subdivision \(L_j' \) of \(L_j \) and a simplicial map \(\varphi: L_j' \to L_i \) which approximates \(r_i \), i.e., its realization \(|\varphi| \) and \(r_i \) are \(\eta \)-near. By the choice of \(\eta \), \(f_{ik}|\varphi| \) and \(f_{ik}r_i \) are \(\delta \)-near. Since \(\varphi \) is simplicial and \(s = \dim L_j = \dim L_j' \), \(\varphi \) induces a map \(h = |\varphi|: P_j \to |L_j'| = |L_j'(s)| \to |L_i(s)| \subset |L_i(n+i)| \). Thus

(3) \(f_{ik}h \) and \(f_{ik}r_i \) are \(\delta \)-near.

Since \(h: P_j \to |L_j(n+i)| \), by (2)

(4) \(g_{ik}h \) and \(f_{ik}h \) are \(\delta \)-near.

By (1), (3) and (4), \(f_{jk} \) and \(g_{ik}h \): \(P_j \to |L_k(n)| \) are \(\varepsilon \)-near. Thus \(j \) and the map \(g_{ik}h \) satisfies the condition in Lemma 4 for \(k \) and \(\varepsilon \). Then \(\dim X \leq n \). This means the inequality \(\dim X \leq \dim_Z X \).

Next, we show the inequality \(\dim_Z X \leq \dim X \). If \(\dim X = \infty \), there is nothing to prove, so we consider the case \(\dim X \leq n < \infty \) for some integer \(n \). It is easy to show \(\dim_Z X \leq n \) by Lemmas 4 and 5. This means the inequality \(\dim_Z X \leq \dim X \). Therefore, we have the required equality.

Corollary 2 follows from Theorem 1 and also means that Dranishnikov’s example is not approximate movable.

Borsuk [2] introduced an absolute neighborhood retract, in notation ANR. There are many generalizations of ANR. Noguchi [7] introduced an absolute neighborhood retract in the sense of Noguchi, in notation AANR_N. Clapp [4] introduced an absolute neighborhood retract in the sense of Clapp, in notation AANR.C. Borsuk [3] introduced a nearly extendable set, in notation NE-set. Mardešić [6] introduced an approximate polyhedron, in notation AP. In [9, II, III] we gave their descriptions in approximate shape theory. By (II.4.7), (II.4.6), (II.2.18), (II.2.3), (II.5.10), (II.5.11) and (III.1.2) of [9], these ANR,
AANR\textsubscript{N}, AANR\textsubscript{C}, NE-set and AP are approximate movable (see the table of [9, II, p. 337]). Thus we have

Corollary 6. If \(X \) is ANR, ANRN, ANRC, NE-set or AP, then \(\dim X = \dim \mathbb{Z} X \) holds.

References

Department of Mathematics, Faculty of Education, University of Yamaguchi, Yamaguchi City, 753, Japan

E-mail address: f00300@sinet.ad.jp