Local derivations of nest algebras
HTML articles powered by AMS MathViewer
- by De Guang Han and Shu Yun Wei
- Proc. Amer. Math. Soc. 123 (1995), 3095-3100
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246521-1
- PDF | Request permission
Abstract:
Let X be an arbitrary reflexive Banach space, and let $\mathcal {N}$ be a nest on X. Denote by $\mathcal {D}(\mathcal {N})$ the set of all derivations from $\operatorname {Alg}\mathcal {N}$ into $\operatorname {Alg}\mathcal {N}$. For $N \subset \mathcal {N}$, we set ${N_ - } = \vee \{ M \in \mathcal {N}:M \subset N\}$. We also write ${0_ - } = 0$. Finally, for $E, F \in \mathcal {N}$ define $(E,F] = \{ K \in \mathcal {N}:E \subset K \subseteq F\}$. In this paper we prove that a sufficient condition for $\mathcal {D}(\mathcal {N})$ to be (topologically) algebraically reflexive is that for all $0 \ne E \in \mathcal {N}$ and for all $X \ne F \in \mathcal {N}$, there exist $M \in (0,E]$ and $N \in (F,X]$, such that ${M_ - } \subset M$ and ${N_ - } \subset N$. In particular, we prove that this condition automatically holds for nests acting on finite-dimensional Banach spaces.References
- A. N. Loginov and V. S. Šul′man, Hereditary and intermediate reflexivity of $W^*$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1260–1273, 1437 (Russian). MR 0405124
- Don Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra 14 (1983), no. 3, 225–233. MR 718951, DOI 10.1080/03081088308817559 Han Deguang, Derivations and isomorphisms of certain reflexive operator algebras, submitted.
- De Guang Han, Rank one operators and bimodules of reflexive operator algebras in Banach spaces, J. Math. Anal. Appl. 161 (1991), no. 1, 188–193. MR 1127556, DOI 10.1016/0022-247X(91)90368-A —, Cohomology of certain reflexive operator algebras, submitted.
- De Guang Han, The first cohomology groups of nest algebras on normed spaces, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1147–1149. MR 1139465, DOI 10.1090/S0002-9939-1993-1139465-5
- Richard V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. MR 1051316, DOI 10.1016/0021-8693(90)90095-6
- David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), no. 2, 283–299. MR 935008, DOI 10.2307/2374503
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
- M. S. Lambrou, Approximants, commutants and double commutants in normed algebras, J. London Math. Soc. (2) 25 (1982), no. 3, 499–512. MR 657507, DOI 10.1112/jlms/s2-25.3.499
- N. K. Spanoudakis, Generalizations of certain nest algebra results, Proc. Amer. Math. Soc. 115 (1992), no. 3, 711–723. MR 1097353, DOI 10.1090/S0002-9939-1992-1097353-6
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3095-3100
- MSC: Primary 47D25; Secondary 47B47
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246521-1
- MathSciNet review: 1246521