Admissibility, the locally convex approximation property, and the $\textrm {AR}$-property in linear metric spaces
HTML articles powered by AMS MathViewer
- by Nguyen To Nhu PDF
- Proc. Amer. Math. Soc. 123 (1995), 3233-3241 Request permission
Abstract:
We introduce the notion of the locally convex approximation property (the LCAP) for convex sets in linear metric spaces. The LCAP is an extension of the notion of admissibility of Klee. We prove that any convex set with the LCAP is an AR.References
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- Jos van der Bijl and Jan van Mill, Linear spaces, absolute retracts, and the compact extension property, Proc. Amer. Math. Soc. 104 (1988), no. 3, 942–952. MR 964878, DOI 10.1090/S0002-9939-1988-0964878-X
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116, DOI 10.2140/pjm.1951.1.353
- Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), no. 1, 287–338 (1980). MR 583711
- Victor Klee, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281–285. MR 131149, DOI 10.1007/BF01360762
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763
- M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133–138 (English, with Ukrainian summary). MR 4990, DOI 10.4064/sm-9-1-133-138
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254 —, The finite dimensional approximation property and the AR-property in needle point spaces, J. London Math. Soc. (to appear).
- Nguyen To Nhu and Katsuro Sakai, The compact neighborhood extension property and local equi-connectedness, Proc. Amer. Math. Soc. 121 (1994), no. 1, 259–265. MR 1232141, DOI 10.1090/S0002-9939-1994-1232141-0 Nguyen To Nhu, Jose M. R. Sanjurjo, and Tran Van An, The AR-property for Roberts’ example of a compact convex set with no extreme points, Proc. Amer. Math. Soc. (submitted).
- Nguyen To Nhu and Le Hoang Tri, Every needle point space contains a compact convex AR-set with no extreme points, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1261–1265. MR 1152989, DOI 10.1090/S0002-9939-1994-1152989-0
- Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counterexample to Schauder’s conjecture, Topology 33 (1994), no. 2, 371–378. MR 1273789, DOI 10.1016/0040-9383(94)90018-3
- James W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), no. 3, 255–266. MR 470851, DOI 10.4064/sm-60-3-255-266 —, Pathological compact convex sets in the spaces ${L_p},0 \leq p < 1$, The Altgeld Book, University of Illinois, 1976.
- Stefan Rolewicz, Metric linear spaces, Monografie Matematyczne, Tom 56. [Mathematical Monographs, Vol. 56], PWN—Polish Scientific Publishers, Warsaw, 1972. MR 0438074
- James E. West, Open problems in infinite-dimensional topology, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 523–597. MR 1078666
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3233-3241
- MSC: Primary 54C55; Secondary 54D45
- DOI: https://doi.org/10.1090/S0002-9939-1995-1246533-8
- MathSciNet review: 1246533