Statistics for special $q,t$-Kostka polynomials
HTML articles powered by AMS MathViewer
- by Susanna Fishel PDF
- Proc. Amer. Math. Soc. 123 (1995), 2961-2969 Request permission
Abstract:
Kirillov and Reshetikhin introduced rigged configurations as a new way to calculate the entries ${K_{\lambda \mu }}(t)$ of the Kostka matrix. Macdonald defined the two-parameter Kostka matrix whose entries ${K_{\lambda \mu }}(q,t)$ generalize ${K_{\lambda \mu }}(t)$. We use rigged configurations and a formula of Stembridge to provide a combinatorial interpretation of ${K_{\lambda \mu }}(q,t)$ in the case where $\mu$ is a partition with no more than two columns. In particular, we show that in this case, ${K_{\lambda \mu }}(q,t)$ has nonnegative coefficients.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- Adriano M. Garsia and Mark Haiman, A graded representation model for Macdonald’s polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610. MR 1214091, DOI 10.1073/pnas.90.8.3607
- S. V. Kerov, A. N. Kirillov, and N. Yu. Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial′naya Geometriya, Gruppy Li i Mekh. VIII, 50–64, 193 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 916–924. MR 869576, DOI 10.1007/BF01247087
- A. N. Kirillov and N. Yu. Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial′naya Geometriya, Gruppy Li i Mekh. VIII, 65–115, 194 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 925–955. MR 869577, DOI 10.1007/BF01247088
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598 —, A new class of symmetric functions, Actes 20e Séminaire Lotharingien (1988), 131-171.
- John R. Stembridge, Some particular entries of the two-parameter Kostka matrix, Proc. Amer. Math. Soc. 121 (1994), no. 2, 367–373. MR 1182707, DOI 10.1090/S0002-9939-1994-1182707-1
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 2961-2969
- MSC: Primary 05E05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1264811-3
- MathSciNet review: 1264811