PURELY INFINITE SIMPLE C^*-CROSSED PRODUCTS

JA A JEONG

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let α be an outer action by a finite group G on a simple C^*-algebra A with $RR(A) = 0$. If A is purely infinite, then the C^*-crossed product $A \times_\alpha G$ is purely infinite. The converse is also true if G is a finite abelian group.

1. INTRODUCTION

A C^*-algebra A is said to be infinite if A contains an infinite projection p, that is, p is Murray-von Neumann equivalent to its subprojection, and purely infinite if every hereditary C^*-subalgebra B of A is infinite. For a simple C^*-algebra A, A is purely infinite if and only if A has a purely infinite hereditary C^*-subalgebra B. In fact, for any hereditary C^*-subalgebra B in A, there exists a unitary u in the multiplier algebra $M(A)$ of A such that $uBu^* \cap C \neq 0$ [8, Lemma 3.4]. Every projection in a purely infinite C^*-algebra is obviously infinite, but it is not known whether there exists an infinite simple C^*-algebra containing a projection which is not infinite. In [11] Zhang proved that a purely infinite simple C^*-algebra A has the following property (FS): the set of all selfadjoint elements with finite spectra is dense in the set of all selfadjoint elements A_{sa} in A, equivalently the set of all invertible selfadjoint elements is dense in $A_{sa} (RR(A) = 0)$ [1], which means that purely infinite simple C^*-algebras have many projections in some sense. Cuntz algebras $\mathcal{O}_n \ (n \geq 2)$, Cuntz-Krieger algebras $\mathcal{O}_A \ (A$ is an irreducible matrix) [2] and the Calkin algebra $B(H)/\mathcal{K} \ (\mathcal{K}$ is the C^*-algebra of compact operators on a separable infinite-dimensional Hilbert space $H)$ are examples of purely infinite simple C^*-algebras.

Kishimoto [5] showed that the reduced C^*-crossed product $A \times_\alpha G$ of a simple C^*-algebra by an outer action α of a discrete group G is simple. If A is purely infinite simple, then $A \times_\alpha G$ is obviously infinite simple since it contains A as a C^*-subalgebra. We show that it is actually purely infinite if G is finite. It will also be shown that pure infiniteness of $A \times_\alpha G$ implies that...
of A if A is a simple C^*-algebra of real rank zero ($RR(A) = 0$) and G is a finite abelian group.

2. Purely infinite C^*-crossed products

It is known that a simple C^*-algebra A is purely infinite if and only if $RR(A) = 0$ and every projection of A is infinite [13, Theorem 1.2]. In [9] Rørdam proved that if A is a unital C^*-algebra, then $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ is simple if and only if either $A \cong M_n$ or A is purely infinite simple.

Theorem 1. Let (A, G) be a C^*-dynamical system with a finite group G and a unital purely infinite simple C^*-algebra A such that $A \rtimes G$ is simple. Then $A \rtimes G$ is purely infinite if and only if $RR(A \rtimes G) = 0$.

Proof. Since the purely infinite simple C^*-algebra $A \rtimes G$ has real rank zero, that is, $RR(A \rtimes G) = 0$, we only need to prove the converse. It suffices to show that $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\alpha \otimes \text{id}} G$ is simple since

$$M((A \rtimes G) \otimes \mathcal{K})/((A \rtimes G) \otimes \mathcal{K}) \cong (M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\alpha \otimes \text{id}} G.$$

This algebra is isomorphic to $M((A \otimes \mathcal{K}) \times_{\alpha \otimes \text{id}} G)/((A \otimes \mathcal{K}) \times_{\alpha \otimes \text{id}} G)$, which is prime by [12, Theorem 6.2]. For ease of notation write $\tilde{\alpha}$ for $\alpha \otimes \text{id}$. Since $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ is simple, the subgroup $N = \{t \in G : \tilde{a}_t(x) = u_t x u_t^* \text{ for some unitary } u_t \in M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})\}$ is normal in G [7, p. 158]. The primeness of $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} G$ means that $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$ is G-prime [7, Proposition 2.5] for the action β of G on $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$ defined by

$$\beta_t^s(\sum_s x_s \lambda_s) = \sum_s \tilde{a}_t(x_s) \lambda_{ts^{-1}}$$

for $\sum_s x_s \lambda_s \in (M(A \otimes \mathcal{K})/(A \otimes K)) \times_{\tilde{\alpha}} N$ and $t \in G$ [7, p.164], where $x_s \in M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ and λ is the left regular representation of G. Let C be the commutant of $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ in $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$. Then $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$ is G-prime if and only if C is G-simple [7, Proposition 2.9]. Since $A \otimes \mathcal{K}$ is purely infinite simple, $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ is simple. In this case the G-invariant ideals of $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$ correspond exactly to the G-invariant ideals of C and hence we conclude that $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} N$ is G-simple, therefore $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \times_{\tilde{\alpha}} G$ is simple [7, Theorem 3.2].

Lemma 2. Let $\{p_i\}_{i=1}^n$ be finitely many projections in a simple C^*-algebra A such that $\|p_i p_j\| < \varepsilon(< 1/n_i)$, $i \neq j$. Then their supremum $\vee p_i$ (in A^{**}) is a projection in A and $\|\sum_i p_i - \vee p_i\| \leq \frac{n \varepsilon}{\sqrt{1-n \varepsilon}}$.

Proof. The first assertion is [4, Lemma 2]. Recall that the supremum $\vee p_i$ of $\{p_i\}$ is the projection on the closed subspace $\{p_1 \xi_1 + \cdots + p_n \xi_n | \xi_i \in \mathcal{K}\}$ where (π_u, \mathcal{K}) is the universal representation of A (so that A^{**} is the σ-weak closure of $\pi_u(A)$ in $B(\mathcal{K})$). Let $\xi = p_1 \xi_1 + \cdots + p_n \xi_n$ be a unit vector in $(\vee p_i) \mathcal{K}$. Then from the proof of [4, Lemma 2] it follows that $\|p_i \xi_i\| \leq \frac{1}{\sqrt{1-n \varepsilon}}$ for each
Then we have

\[\| (\sum_i p_i - \sqrt{p_i}) \xi \| = \| \sum_i p_i (\sum_j p_j \xi_j) - \xi \| \]
\[= \| \sum_i p_i \xi_i + \sum_{i \neq j} p_i p_j \xi_j - \sum_i p_i \xi_i \| \]
\[< \frac{n^2 \epsilon}{\sqrt{1 - ne}}. \]

An action \(\alpha \) of a group \(G \) on a \(C^* \)-algebra \(A \) is said to be outer if each automorphism \(\alpha_g \) is outer for each \(g \neq 1 \), where \(1 \) denotes the unit of \(G \).

Theorem 3. Let \(\alpha \) be an outer action by a finite group \(G \) on a simple \(C^* \)-algebra \(A \) with \(RR(A) = 0 \). If \(A \) is purely infinite, then the \(C^* \)-crossed product \(A \times_\alpha G \) is purely infinite. Conversely, if \(A \times_\alpha G \) is purely infinite and \(G \) is abelian, then \(A \) is purely infinite.

Proof. Since \(G \) is finite, we can, as in [10], identify the fixed-point algebra \(A^\alpha \) with a certain hereditary \(C^* \)-subalgebra of the simple \(C^* \)-crossed product \(A \times_\alpha G \) [10]. Hence it suffices to show that \(A^\alpha \) is purely infinite. Let \(|G| = n \).

For every \(G \)-invariant hereditary \(C^* \)-subalgebra \(B \) of \(A \) and every \(\epsilon > 0 \), there exists a nonzero projection \(p \) in \(B \) such that \(\| \alpha_s(p) \alpha_t(p) \| < \epsilon \) for \(s \neq t \), \(s, t \in G \). Let \(\tilde{p} = \vee g \in G \alpha_g(p) \), which is in \(B \) by Lemma 2 for \(\epsilon < 1/4n^2 \), so in \(B^\alpha \). We prove \(\tilde{p} \) is infinite in \(B^\alpha \).

Since \(A \) is purely infinite, there is a partial isometry \(v \) in \(A \) such that \(v^* v = p \), \(vv^* = e < p \) and \(v = ev = vp \). Put \(w = \sum_{g \in G} \alpha_g(v) \in A^\alpha \). Then

\[w^* w = (\sum_{g \in G} \alpha_g(v^*)) (\sum_{s \in G} \alpha_s(v)) \]
\[= \sum_{g \neq s \in G} \alpha_g(v^*) \alpha_s(v) \]
\[= \sum_{g \in G} \alpha_g(p) + \sum_{g \neq s} \alpha_g(v^*) \alpha_s(v). \]

Since \(\| \sum_{g \neq s} \alpha_g(v^*) \alpha_s(v) \| < n^2 \epsilon \), it follows from Lemma 2 that

\[\| w^* w - \tilde{p} \| \leq \| w^* w - \sum_{g \in G} \alpha_g(p) \| + \| \sum_{g \in G} \alpha_g(p) - \tilde{p} \| < n^2 \epsilon + \frac{n^2 \epsilon}{\sqrt{1 - ne}} < 1. \]

Hence \(w^* w \) is invertible in the hereditary \(C^* \)-subalgebra \((A^\alpha)_{\tilde{p}} \) of \(A^\alpha \) generated by \(\tilde{p} \) with the inverse \(w_1 \). Then \(u = w(w_1)^{1/2} \in (A^\alpha)_{\tilde{p}} \) is a partial isometry such that \(u^* u = \tilde{p} \) and \(uu^* < \tilde{p} \), and \(\tilde{p} \) is infinite in \(A^\alpha \).

If \(G \) is abelian, then it follows from the duality theorem for crossed products that \((A \times_\alpha G) \times_\alpha \tilde{G} \) is isomorphic to \(A \otimes M_n \) which is of real rank zero. By Theorem 1 we conclude that \(A \) is purely infinite if \(A \times_\alpha G \) is purely infinite.

Example 4. In [3] it was proved that every countable discrete group has a faithful representation as a subgroup of outer automorphisms of the Cuntz algebra \(\mathcal{O}_\infty \). If a finite group \(G \) acts on \(\mathcal{O}_n = C^*(S_1, \ldots, S_n) \) by permutations on
If \(\{S_1, \cdots, S_n\} \) \((2 \leq n \leq \infty) \), then the action is outer [3, 6] and the simple \(C^* \)-crossed product is purely infinite by Theorem 2.

ACKNOWLEDGMENT

The author would like to thank N. C. Phillips for valuable conversations.

REFERENCES

Global Analysis Research Center, Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Current address: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

E-mail address: jajeong@math.snu.ac.kr