BANACH SPACES OF POLYNOMIALS
WITHOUT COPIES OF l^1

MANUEL VALDIVIA

(Communicated by Theodore W. Gamelin)

Abstract. Let X be a Banach space. For a positive integer m, let $\mathcal{P}_{w^*}(mX^*)$ denote the Banach space formed by all m-homogeneous polynomials defined on X^* whose restrictions to the closed unit ball $B(X^*)$ of X^* are continuous for the weak-star topology. For each one of such polynomials, its norm will be the supremum of the absolute value in $B(X^*)$. In this paper the bidual of $\mathcal{P}_{w^*}(mX^*)$ is constructed when this space does not contain a copy of l^1. It is also shown that, whenever X is an Asplund space, $\mathcal{P}_{w^*}(mX^*)$ is also Asplund.

Unless stated, all linear spaces used here throughout are assumed to be non-trivial and defined over the field \mathbb{C} of complex numbers. Our topological spaces will all be Hausdorff.

If X is a Banach space, X^* and X^{**} will be its conjugate and second conjugate, respectively. We identify X in the usual manner with a subspace of X^{**}. $B(X)$ is the closed unit ball of X. The duality between X and X^* is denoted by $\langle \cdot , \cdot \rangle$, i.e., for x in X and u in X^*, $\langle x, u \rangle = u(x)$. The norm of any Banach space will be represented by $\| \cdot \|$. In the product $X_1 \times X_2 \times \cdots \times X_m$ of the Banach spaces X_1, X_2, \ldots, X_m we consider the norm given by the Minkowski functional of $B(X_1) \times B(X_2) \times \cdots \times B(X_m)$. By $\mathcal{M}(X_1, X_2, \ldots, X_m)$ we denote the linear space over \mathbb{C} of the continuous m-linear forms defined on $X_1 \times X_2 \times \cdots \times X_m$. We assume $\mathcal{M}(X_1, X_2, \ldots, X_m)$ provided with the usual norm, that is, for any such m-linear form f,

$$\| f \| := \sup \{|f(x_1, x_2, \ldots, x_m)|: (x_j) \in B(X_j), j = 1, 2, \ldots, m\}.$$

$\mathcal{M}_{w^*}(X_1^*, X_2^*, \ldots, X_m^*)$ is the subspace of $\mathcal{M}(X_1^*, X_2^*, \ldots, X_m^*)$ formed by those elements whose restrictions to $B(X_1^*) \times B(X_2^*) \times \cdots \times B(X_m^*)$ are continuous with respect to the topology induced by the weak-star topology of $X_1^* \times X_2^* \times \cdots \times X_m^*$.

For a Banach space X and a positive integer m, $\mathcal{P}(mX)$ is the linear space of the continuous m-homogeneous polynomials defined on X. We consider $\mathcal{P}(mX)$ endowed with the usual norm, i.e., for any such f,

$$\|f\| := \sup \{|f(x)|: x \in B(X)\}.$$
\(\mathcal{P}_w^*(mX^*) \) represents the subspace of \(\mathcal{P}(mX^*) \) whose elements are those polynomials that are weak-star continuous in \(B(X^*) \). \(\mathcal{P}_w^*(mX^*) \) is the Banach subspace of \(\mathcal{P}(mX^*) \) algebraically defined as the closure of \(\mathcal{P}_w^*(mX^*) \) in \(\mathcal{P}(mX^*) \) when this space is endowed with the compact open topology, i.e., the topology of uniform convergence on compact subsets of \(X^* \).

A Banach space \(X \) is said to be Asplund if every separable subspace \(Y \) of \(X \) has separable dual \(Y^* \) or, equivalently, \(X^* \) has the Radon-Nikodym property.

For a subset \(\{x_j: j \in J\} \) of a Banach space \(X \), \(\text{lin}\{x_j: j \in J\} \) denotes its linear span while \([x_j: j \in J] \) is its closed linear span.

In a Banach space \(X \), a biorthogonal system
\[
(x_j, u_j)_{j \in J}, \quad x_j \in X, \ u_j \in X^*, \quad \langle x_j, u_j \rangle = 1, \quad \langle x_j, u_h \rangle = 0, \quad j \neq h, \quad j, \ h \in J,
\]
is a Markushevich basis if \(\{x_j: j \in J\} \) coincides with \(X \) and \(\text{lin}\{u_j: j \in J\} \) is weak-star dense in \(X^* \).

If \(S \) is a compact topological space, \(C(S) \) is the real vector space of the continuous real-valued functions defined on \(S \) with the usual norm. \(S \) is said to be Corson if it is homeomorphic to a subspace \(T \) of the product \(\mathbb{R}^J \), for some \(J \) depending on \(S \), where \(\mathbb{R} \) is the set of reals equipped with the usual topology, such that if the point \((a_j: j \in J)\) is in \(T \), then the set \(\{j \in J: a_j \neq 0\} \) is countable. \(S \) is an Eberlein compact if it is homeomorphic to a weakly compact subset of a Banach space. Using a result of Amir and Lindenstrauss [1], if \(S \) is Eberlein, then it is homeomorphic to a weakly compact subset \(A \) of the real space \(c_0(J) \), for some index set \(J \) depending on \(S \); clearly, the mapping \(\varphi \) from \(A \) to \(\mathbb{R}^J \) which assigns to each element \((a_j: j \in J)\) in \(A \) the element \((a_j: j \in J)\) of \(\mathbb{R}^J \) is a homeomorphism from \(A \) onto \(\varphi(A) \) with \(\{j \in J: a_j \neq 0\} \) countable, hence \(S \) is a Corson compact.

We have shown two results, in [4] and [5], respectively, that are more general than the following: (a) If \(X \) is an Asplund space admitting a Markushevich basis \((x_j, u_j)_{j \in J}\) such that, for each \(u \) in \(X^* \), the set \(\{j \in J: \langle x_j, u \rangle \neq 0\} \) is countable, then \(X \) is weakly compactly generated. (b) If \(S \) is a Corson compact and \(E \) is a subspace of \(C(S) \) that is closed for the topology of pointwise convergence, there is a Markushevich basis \((f_j, u_j)_{j \in J}\) for \(E \) such that, for each \(s \) in \(S \), the set \(\{j \in J: f_j(s) \neq 0\} \) is countable.

Let \(S \) and \(T \) be two topological spaces. Let \(\varphi \) be a set-valued map from \(S \) to \(T \). A mapping \(\psi \) from \(S \) to \(T \) is said to be a selector of \(\varphi \) whenever \(\psi(s) \) belongs to \(\varphi(s) \) for each \(s \) in \(S \). The mapping \(\varphi \) is upper semicontinuous provided there is, for each \(s \) in \(S \) and each open neighborhood \(V \) of \(\varphi(s) \), a neighborhood \(U \) of \(s \) such that \(\varphi(x) \) is contained in \(V \) for every \(x \) in \(U \).

We shall need the following result [3]: (c) Let \(S \) be a metric space and let \(Y \) be a Banach space such that \(Y^* \) has the Radon-Nikodym property. Let \(\varphi \) be a set-valued map from \(S \) to \(Y^* \). If \(\varphi \) is upper semicontinuous and \(\varphi(x) \) is a non-empty compact set for each \(x \) in \(X \) with respect to the weak-star topology of \(Y^* \), then there is a selector \(\psi \) of \(\varphi \) of the first Baire class between the metric spaces \(S \) and \(Y^* \).

We say that a mapping \(f \) between the topological spaces \(S \) and \(T \) is quasi-Baire if there is a countable set \(L \) of continuous mappings from \(S \) to \(T \) such that \(f \) belongs to the closure of \(L \) in the topological space \(T^S \).

The following result that we have shown in [6] will also be needed: (d) Let \(X \) be a real Banach space. If there is a quasi-Baire mapping \(\Phi \) from \(X \) to \(X^* \)
such that \(\|\Phi(x)\| = 1, \langle x, \Phi(x) \rangle = \|x\|, \ x \in X, \ x \neq 0 \), then \(X \) is an Asplund space.

Theorem 1. If the Banach spaces \(X_1, X_2, \ldots, X_m \) are all Asplund, then \(\mathcal{M}_w(X_1^*, X_2^*, \ldots, X_m^*) \) is also Asplund.

Proof. In order to simplify notation, let us write

\[Y := \mathcal{M}_w(X_1^*, X_2^*, \ldots, X_m^*) \]

and \(B \) instead of \(B(X_1^*) \times B(X_2^*) \times \cdots \times B(X_m^*) \) provided with the topology induced by the weak-star topology of \(X_1^* \times X_2^* \times \cdots \times X_m^* \).

For each \(f \) in \(Y \), we define \(\varphi(f) \) as the set of points \(x \in B \) for which \(f(x) = \|f\| \). It is plain that \(\varphi(f) \) is non-empty and compact. Also, it is not hard to see that the set-valued map \(\varphi \) from \(Y \) to \(X_1^* \times X_2^* \times \cdots \times X_m^* \) is upper semicontinuous when the latter space has the weak-star topology. Result (c) yields then a selector \(\psi \) of \(\varphi \) of the first Baire class between the metric spaces \(Y \) and \(X_1^* \times X_2^* \times \cdots \times X_m^* \). Hence, there is a sequence \((\psi_n) \) of continuous mappings from \(Y \) to \(X_1^* \times X_2^* \times \cdots \times X_m^* \) such that, for each \(f \) in \(Y \),

\[\lim_{n} \psi_n(f) = \psi(f). \]

For each \(f \) in \(Y \), we put \(f = f_1 + if_2 \), with \(f_1 \) and \(f_2 \) real valued,

\[||f'|| := \sup\{|f_1(x_1, x_2, \ldots, x_m)|: (x_1, x_2, \ldots, x_m) \in B\}. \]

By setting \(Z := \{f_1: f \in Y\} \) we obtain a real vector space \(Z \) in which we consider the norm described in (1). If \(Y_r \) denotes the real Banach space subjacent to \(Y \) and we put \(\Gamma f = f_1, f \in Y_r \), then

\[\Gamma: Y_r \to Z \]

is an onto linear map. Besides, if \((x_1, x_2, \ldots, x_m) \) belongs to \(B \) and \(f \) is in \(Y \), we have

\[f(ix_1, x_2, \ldots, x_m) = f_1(ix_1, x_2, \ldots, x_m) + if_2(ix_1, x_2, \ldots, x_m) = if_1(x_1, x_2, \ldots, x_m) - f_2(x_1, x_2, \ldots, x_m), \]

and thus

\[||f'|| \leq ||f|| \leq 2||f||, \]

concluding that \(\Gamma \) is a topological isomorphism from \(Y_r \) onto \(Z \). It all reduces to show that \(Z \) is an Asplund space, since then \(Y_r \), and thereby \(Y \), will also be Asplund.

Each element \((u_1, u_2, \ldots, u_m) \) of \(X_1^* \times X_2^* \times \cdots \times X_m^* \) defines a continuous linear form \(\Lambda(u_1, u_2, \ldots, u_m) \) on \(Z \) by putting, for each \(g \) of \(Z \),

\[(g, \Lambda(u_1, u_2, \ldots, u_m)) = g(u_1, u_2, \ldots, u_m). \]

We write

\[\Phi := \Lambda \circ \psi \circ \Gamma^{-1}, \quad \Phi_n = \Lambda \circ \psi_n \circ \Gamma^{-1}, \quad n = 1, 2, \ldots. \]

The mappings \(\Phi_n: Z \to Z^* \) are then continuous, \(n = 1, 2, \ldots \), and

\[\lim_n \Phi_n(g) = \Phi(g), \quad g \in Z. \]

Therefore,

\[\Phi: Z \to Z^* \]
is a quasi-Baire map. Let us write $M := A(B)$. Clearly, M is contained in $B(Z^*)$ and so, for each f in Y, $\|\Phi(f)\| \leq 1$. Moreover, if (u_1, u_2, \ldots, u_m) is the element of B such that $\psi(f) = (u_1, u_2, \ldots, u_m)$, then

$$\|f_1\| \leq \|f\| = f(u_1, u_2, \ldots, u_m) = (f_1, \Phi(f_1)) \leq \|f_1\| \cdot \|\Phi(f_1)\|,$$

and we have

$$\|\Phi(f_1)\| = 1, \quad (f_1, \Phi(f_1)) = \|f_1\|, \quad f_1 \in Z, f_1 \neq 0.$$

We apply now result (d) to conclude that Z is Asplund. Q.E.D.

Corollary 1.1. Let m be a positive integer. If X is an Asplund space, then $\mathcal{W} \ast (mX^*)$ is an Asplund space.

Proof. In the previous theorem we take $X = X_1 = X_2 = \cdots = X_m$. Then subspace F of $\mathcal{W} \ast (X_1^*, X_2^*, \ldots, X_m^*)$ consisting of the symmetric m-linear forms is a Banach space which is Asplund. We conclude by recalling that F is isomorphic to $\mathcal{W} \ast (mX^*)$. Q.E.D.

The following result can be found in [2]: (e) Let X be a Banach space with no copy of l^1. Let A be a weak-star compact subset of X^*. If B is the closed absolutely convex hull of A in X^*, then B is weak-star compact.

Theorem 2. Let X be a Banach space. If, for a positive integer m, $\mathcal{W} \ast (mX^*)$ does not contain a copy of l^1, then $\mathcal{W} \ast (mX^*)$ identifies with $\mathcal{W} \ast (mX^*)$.

Proof. Let λ be the map from X^* to $\mathcal{W} \ast (mX^*)$ such that, for each u in X^* and each g in $\mathcal{W} \ast (mX^*)$, $(\lambda(u), g) = g(u)$. We set $A := \lambda(B(X^*))$. It can be simply checked that A is a weak-star compact subset of $\mathcal{W} \ast (mX^*)$. Now, let B stand for the closed absolutely convex hull of A in the Banach space $\mathcal{W} \ast (mX^*)$. In light of the previously mentioned result (e), we have that B is also weak-star compact. We deduce from this that, if v is a non-zero weak-star continuous linear form defined on $\mathcal{W} \ast (mX^*)$, then $v \circ \lambda$ is a non-zero element of $\mathcal{W} \ast (mX^*)$. Consequently, B is the closed unit ball of $\mathcal{W} \ast (mX^*)$.

Let Λ be a map from X^* to $\mathcal{W} \ast (mX^*)$ such that for each u in X^* and each g in $\mathcal{W} \ast (mX^*)$,

$$(g, \Lambda u) = g(u).$$

In $\mathcal{W} \ast (mX^*)$, let H be the linear hull of $\Lambda(X^*)$ and E the closure of H. E is a Banach space. By Γ we denote the mapping from E to $\mathcal{W} \ast (mX^*)$ which assigns to each u in E its restriction to $\mathcal{W} \ast (mX^*)$. We next show that Γ is an isometry.

Obviously, $\lambda = \Gamma \circ \Lambda$. If g belongs to $\mathcal{W} (mX^*)$ and $\alpha \in \mathbb{C}$, then $g(\alpha x) = \alpha^m g(x)$, and thus, if, for a positive integer p, $B_p(X^*)$ represents the closed unit ball in X^* of radius 2^{-p}, the closed absolutely convex hull of $\Lambda(B_p(X^*))$ in $\mathcal{W} \ast (mX^*)$ coincides with the closed ball in E of radius 2^{-pm}. Similarly, the closed absolutely convex hull of $\lambda(B_p(X^*))$ in $\mathcal{W} \ast (mX^*)$ is the closed ball in $\mathcal{W} \ast (mX^*)$ of radius 2^{-pm}.

Now, let P and Q be the absolutely convex hulls of $\Lambda(B(X^*))$ and $\lambda(B(X^*))$ in E and $\mathcal{W} \ast (mX^*)$, respectively. Take a non-zero element w of E. We find $0 < \beta < 1$ such that $\|\beta w\| < 2^{-2m}$. We choose w_1 in P so that

$$\|\beta w - 2^{-2m} w_1\| < 2^{-4m}.$$
Proceeding by induction, let us assume that, for a positive integer \(p \), we have found \(w_1, w_2, \ldots, w_p \) in \(P \) such that
\[\| \beta w - 2^{-2m}w_1 - 2^{-4m}w_2 - \cdots - 2^{-2pm}w_p \| < 2^{-2(p+1)m}. \]

We then determine \(w_{p+1} \) in \(P \) for which
\[\| 2^{m(p+1)}(\beta w - 2^{-2m}w_1 - 2^{-4m}w_2 - \cdots - 2^{-2pm}w_p) - w_{p+1} \| < 2^{-2m} \]
and
\[\| \beta w - 2^{-2m}w_1 - 2^{-4m}w_2 - \cdots - 2^{-2pm}w_p - 2^{m(p+1)}w_{p+1} \| < 2^{-2(p+2)m}. \]

Hence, in \(E \), we have
\[\beta w = \sum_{p=1}^{\infty} 2^{-2pm}w_p. \]

We take now a finite subset \(A_p \) of \(B_p(X^*) \) such that \(2^{-pm}w_p \) is in the absolutely convex hull in \(E \) of \(\Lambda(A_p) \). If \(K \) is the closed absolutely convex hull in \(E \) of \(\bigcup_{p=1}^{\infty} \Lambda(A_p) \) we have that \(K \) is compact and \(\beta w \) is clearly in \(K \). Fix an element \(g \) of \(\mathcal{P}(mX^*) \) such that \(\langle g, w \rangle \neq 0 \). We select an element \(f \) of \(\mathcal{P}(mX^*) \) satisfying
\[|f(x) - g(x)| < \frac{1}{2} \beta |\langle g, w \rangle|, \quad x \in \bigcup_{p=1}^{\infty} A_p. \]

Then
\[|\langle f - g, \Lambda(x) \rangle| = |f(x) - g(x)| < \frac{1}{2} \beta |\langle g, w \rangle|, \quad x \in \bigcup_{p=1}^{\infty} A_p, \]

hence
\[|\langle f - g, \beta w \rangle| \leq \frac{1}{2} \beta |\langle g, w \rangle|, \]

and therefore
\[|\langle f, w \rangle| \geq |\langle f, \beta w \rangle| \geq |\langle g, \beta w \rangle| - |\langle f - g, \beta w \rangle| \geq \beta |\langle g, w \rangle| - \frac{1}{2} \beta |\langle g, w \rangle| = \frac{1}{2} \beta |\langle g, w \rangle| \neq 0, \]
thus proving \(\Gamma \) to be one-to-one.

Take now \(v \) in \(\mathcal{P}(mX^*)^* \). We proceed as before and find \(\gamma > 0 \) and \(v_p \) in \(Q, p = 1, 2, \ldots, \) such that in \(\mathcal{P}(mX^*)^* \)
\[\gamma v = \sum_{p=1}^{\infty} 2^{-2pm}v_p. \]

It is then possible to determine a null sequence \((x_q) \) in \(B(X^*) \) and \(\alpha_q > 0, \quad q = 1, 2, \ldots, \sum_{q=1}^{\infty} \alpha_q < 1 \), so that
\[\gamma v = \sum_{q=1}^{\infty} \alpha_q \lambda(x_q). \]
But the series \(\sum_{q=1}^{\infty} \alpha_q \Lambda(x_q) \) converges to an element \(yz \) in \(E \). Thus
\[
\Gamma(z) = \gamma^{-1} \sum_{q=1}^{\infty} \alpha_q (\Gamma \circ \Lambda)(x_q) = \gamma^{-1} \sum_{q=1}^{\infty} \alpha_q \lambda(x_q) = v,
\]
and we have that \(\Gamma \) is onto.

Having in mind that \(\Gamma(P) = Q \), Banach’s isomorphism theorem guarantees that
\[
\Gamma: E \to \mathcal{P}_w^*(mX^*)^*
\]
is an isometry.

As a by-product of this we have that \(B(\mathcal{P}_w^*(mX^*)) \) is \(\sigma(\mathcal{P}_w^*(mX^*), E) \)-dense in \(B(\mathcal{P}_w^*(mX^*)) \), and since this set of linear forms on \(E \) is equicontinuous, it follows that in \(B(\mathcal{P}_w^*(mX^*)) \) the compact open topology of \(\mathcal{P}(mX^*) \) coincides with \(\sigma(\mathcal{P}_w^*(mX^*), E) \); thus \(B(\mathcal{P}_w^*(mX^*)) \) is compact for the topology of pointwise convergence on \(X^* \). The desired result is now immediate. Q.E.D.

Corollary 1.2. Let \(m \) be a positive integer. If the Banach space \(X \) is Asplund, then \(\mathcal{P}_w^*(mX^*) \) is the bidual of \(\mathcal{P}_w^*(mX^*) \).

Proof. It follows from Corollary 1.1 that \(\mathcal{P}_w^*(mX^*) \) is Asplund and so it does not contain copies of \(l^1 \). Our previous theorem now applies. Q.E.D.

Theorem 3. Let \(X \) be a Banach space such that \(X^* \) has the approximation property. If for a positive integer \(m \), \(\mathcal{P}_w^*(mX^*) \) does not contain copies of \(l^1 \), then \(\mathcal{P}_w^*(mX^*)^{**} \) coincides with \(\mathcal{P}(mX^*) \).

Proof. For a positive integer \(p \), we write \(\mathcal{L}_s^p(X^*) \) meaning the subspace of \(\mathcal{M}(X^*, X^*, \ldots, X^*) \) consisting of all symmetric \(p \)-linear forms. This space identifies in the usual fashion with the Banach space \(\mathcal{L}(X^*, \mathcal{L}_s^p(X^*)) \) of the bounded linear operators from \(X^* \) to \(\mathcal{L}_s^p(X^*) \), assuming \(\mathcal{L}_s^p(X^*) = C \) for \(p = 1 \).

Let \(f \) be in \(\mathcal{P}(mX^*) \). We want to show that, given \(\varepsilon > 0 \) and a compact subset \(K \) of \(X^* \), there is an element \(g \) in \(\mathcal{P}_w^*(mX^*) \) such that \(|f(x) - g(x)| < \varepsilon, \ x \in K \). To do this we follow a complete induction procedure. If \(m = 1 \), then \(f \) is an element of \(X^{**} \), so there is an element \(g \) of \(X \), hence of \(\mathcal{P}_w^*(mX^*) \), such that \(|f(x) - g(x)| < \varepsilon, \ x \in K \). We assume the property true for a positive integer \(m - 1 \) and show it still holds for \(m \). We may assume, without loss of generality, that \(K \) is contained in \(B(X^*) \). Let \(h \) be the element of \(\mathcal{L}_s^p(mX^*) \) such that \(h(x, x, \ldots, x) = f(x), \ x \in X^* \). For \(x_1 \) in \(X^* \), \(h(x_1, x, \ldots, x) = h(x_1, x_2, x_3, \ldots, x_m) = h(x_1, x_2, x_3, \ldots, x_m) \).

We get hold of an operator
\[
\zeta: X^* \to \mathcal{L}_s^p(m^{-1}X^*)
\]
of finite rank such that
\[
\|\zeta(x) - h(x, x, \ldots, x)\| < \frac{\varepsilon}{2}, \quad x \in K.
\]
We find \(h_1, h_2, \ldots, h_q \) in \(\mathcal{L}_s^p(m^{-1}X^*) \) and \(u_1, u_2, \ldots, u_q \) in \(X^{**} \) so that
\[
\zeta(x) = u_1(x)h_1 + u_2(x)h_2 + \cdots + u_q(x)h_q, \quad x \in X^*.
\]
We take now \(v_j \) in \(X, \ j = 1, 2, \ldots, q \), such that
\[
|v_j(x) - u_j(x)| \cdot \|h_j\| < \frac{\varepsilon}{4q}, \quad x \in K.
\]

By the induction hypothesis, there is a polynomial \(\kappa_j \) in \(\mathcal{P}_w (m^{-1}X^*) \) for which
\[
|h_j(x, x, \ldots, x) - \kappa_j(x)| \cdot \|v_j\| < \frac{\varepsilon}{4q}, \quad x \in K.
\]

Then
\[
g(x) := v_1(x)\kappa_1(x) + v_2(x)\kappa_2(x) + \cdots + v_q(x)\kappa_q(x), \quad x \in X^*,
\]
is an element of \(\mathcal{P}_w (mX^*) \). For each \(x \) in \(K \), we have
\[
|\zeta(x)(x, x, \ldots, x) - g(x)|
\]
\[
\leq \sum_{j=1}^q |(u_j(x) - v_j(x))h_j(x, x, \ldots, x)|
\]
\[
+ \sum_{j=1}^q |v_j(x)(h_j(x, x, \ldots, x) - \kappa_j(x))|
\]
\[
\leq \sum_{j=1}^q |u_j(x) - v_j(x)| \cdot \|h_j\| + \sum_{j=1}^q |v_j(x) - \kappa_j(x)| \cdot \|h_j(x, x, \ldots, x) - \kappa_j(x)| \leq \frac{\varepsilon}{2}.
\]

Finally, for each \(x \) in \(K \),
\[
|f(x) - g(x)| = |h(x, x, \ldots, x) - g(x)|
\]
\[
\leq |h(x, x, \ldots, x) - \zeta(x)(x, x, \ldots, x)|
\]
\[
+ |\zeta(x)(x, x, \ldots, x) - g(x)|
\]
\[
\leq \|h(x, \cdot, \ldots, \cdot) - \zeta(x)\| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad \text{Q.E.D.}
\]

Corollary 1.3. Let \(X \) be an Asplund space such that \(X^* \) has the approximation property. If \(m \) is a positive integer, \(\mathcal{P}_w (mX^*)^\circ \) coincides with \(\mathcal{P}(mX^*) \).

Proof. It follows immediately from Corollary 1.1 and the last theorem. \quad \text{Q.E.D.}

Theorem 4. Let \(X_1, X_2, \ldots, X_m \) be weakly compactly generated Asplund spaces. If \(G \) is a subspace of \(\mathcal{M}_w (X_1^*, X_2^*, \ldots, X_m^*) \), closed for the topology of pointwise convergence, then \(G \) is a weakly compactly generated Banach space.

Proof. Our notation will be that used in the proof of Theorem 1. For \(j = 1, 2, \ldots, m \), let \(M_j \) be a weakly compact absolutely convex subset whose linear span is dense in \(X_j \). If \(M_j^0 \) is the polar set of \(M_j \) in \(X_j^* \), then this linear space, taking \(M_j^0 \) as closed unit ball, is a normed space in which \(B(X_j^*) \) is weakly compact, hence \(B(X_j^*) \) is a Corson compact for the weak-star topology. We have then that \(B \) is a Corson compact. It can be easily seen that \(Z \) is a closed subspace of \(C(B) \) for the topology of pointwise convergence. We apply result \(\text{(b)} \) to obtain a Markushevich basis for \(\Gamma(G) \) such that, for each \(x \) in \(B \), the set \(\{ j \in J : g_j(x) \neq 0 \} \) is countable. Following the proof of Theorem 1, we have that \(Z \) is Asplund and so it contains no copy of \(l^1 \). If \(D \) is the set formed by the restrictions of the elements of \(\Lambda(B) \) to \(\Gamma(G) \), we can apply result \(\text{(e)} \) to have that the closed absolutely convex hull of \(D \) in \(\Gamma(G)^* \) is weak-star compact, and
thus it coincides with the closed unit ball of this space. From this we have that, for each \(u \) in \(\Gamma(G)^* \), \(\{ j \in J : (g_j, u) \neq 0 \} \) is countable. Result (a) assures then that \(\Gamma(G) \) is weakly compactly generated. If \(G_r \) denotes the real Banach space subjacent to \(G \), it follows that

\[\Gamma_{|G_r} : G_r \to \Gamma(G_r) \]

is an isomorphism, and thereby \(G_r \) is weakly compactly generated. It is now immediate that \(G \) is also weakly compactly generated. Q.E.D.

Corollary 1.4. Let \(m \) be a positive integer. If \(X \) is a weakly compactly generated Asplund space, then \(\mathcal{R}_{w^*}(mX^*) \) is weakly compactly generated.

Proof. The subspace \(F \) of \(\mathcal{M}_{w^*}(X_1^*, X_2^*, \ldots, X_m^*) \) formed by the symmetric \(m \)-linear forms when \(X_1^* = X_2^* = \ldots = X_m^* = X \) is closed for the topology of pointwise convergence and so, in light of last theorem, \(F \) is weakly compactly generated. Since \(F \) is isomorphic to \(\mathcal{R}_{w^*}(mX^*) \), the conclusion follows. Q.E.D.

References

Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain