ASYMPTOTICS OF REPRODUCING KERNELS
ON A PLANE DOMAIN

MIROSLAV ENGLIS

(Communicated by Theodore W. Gamelin)

Abstract. Let \(\Omega \) be a plane domain of hyperbolic type, \(|dz|/w(z)\) the Poincaré metric on \(\Omega \), and \(K_{\Omega,q}(x, y) \) the reproducing kernel for the Hilbert space \(\mathcal{H}^2_\Omega \) of all holomorphic functions on \(\Omega \) square-integrable with respect to the measure \(w(z)^{2q-2} |dz \wedge d\bar{z}| \). It is proved that
\[
\lim_{q \to +\infty} \frac{K_{\Omega,q}(z, \bar{z}) w(z)^{2q}}{2q} = \frac{1}{\pi}.
\]

Let \(\Omega \subset \mathbb{C} \) be a domain of hyperbolic type (i.e., \(\mathbb{C} \setminus \Omega \) contains at least two points), so that the universal covering surface of \(\Omega \) is isomorphic to the unit disc \(D \). Let \(\phi : D \to \Omega \) be the covering map and
\[G = \{ \omega \in \text{Aut}(D) : \phi \circ \omega = \phi \} \]
the corresponding group of covering transformations. \(G \) acts freely and properly discontinuously on \(D \), and \(\Omega \) may be identified with the coset space \(D/G \). The Poincaré metric on \(\Omega \), corresponding to the hyperbolic metric \(|dz|/1-|z|^2 \) on \(D \), is given by \(ds = |dx|/w(x) \), where (see [1, section II.1])
\[w(\phi(z)) = (1-|z|^2)|\phi'(z)|. \]
The identity
\[1 - |\omega(z)|^2 = (1-|z|^2)|\omega'(z)|, \quad z \in D, \ \omega \in \text{Aut}(D), \]
which can be verified by a short computation, shows that the right-hand side indeed depends only on \(\phi(z) \), so that the definition of \(w(x) \) is correct.

The Bergman space \(A^2_\omega(\Omega) \) consists, by definition, of all holomorphic functions on \(\Omega \) square-integrable against the measure \(w(x)^\alpha dE(x) \), where \(dE \) is the Lebesgue area measure. We shall only be interested in the case when \(\alpha \) is an even integer: \(\alpha = 2q - 2 \quad (q \in \mathbb{Z}) \), and we will write \(A^2_q(\Omega) \) instead of \(A^2_\omega(\Omega) \) in that case. Endowed with the Petersson scalar product
\[\langle f, g \rangle_q = \int_{\Omega} f(x) \overline{g(x)} w(x)^{2q-2} dE(x), \]

Received by the editors March 30, 1994.

1991 Mathematics Subject Classification. Primary 30C40, 30E15.

Key words and phrases. Bergman kernel, automorphic functions.

©1995 American Mathematical Society
\(\mathscr{A}_q^2(\Omega) \) becomes a Hilbert space. For \(q \geq 2 \) (or, if \(\Omega \notin O_\Omega \), for \(q \geq 1 \)), it can be shown that \(\mathscr{A}_q^2(\Omega) \neq \{0\} \) and that \(\mathscr{A}_q^2(\Omega) \) admits a reproducing kernel (see [1, Chapter III]): there exists a function \(K_{\Omega, q}(x, y) \) \((x, y \in \Omega) \), holomorphic in \(x \) and antiholomorphic in \(y \), such that

\[
 f(x) = \langle f, K_{\Omega, q}(\cdot, \bar{y}) \rangle_q = \int_{\Omega} f(y) K_{\Omega, q}(x, \bar{y}) w(x)^{2q-2} dE(x),
\]

\(\forall f \in \mathscr{A}_q^2(\Omega), \ x \in \Omega. \)

Our main goal is to prove the following result.

Theorem. For any \(x \in \Omega \),

\[
 \lim_{q \to +\infty} \frac{K_{\Omega, q}(x, \bar{x}) w(x)^{2q}}{2q} = \frac{1}{\pi}.
\]

For \(\Omega = D \), this is trivial, and for \(\Omega \) an annulus or a punctured disc, this has been obtained (by a totally different method) in [3] and applied to the study of the asymptotics of the Berezin transform. The latter, in turn, provides the basic tool for certain quantization procedures on \(\Omega \) (construction of \(*\)-products) [4], [5].

Proof. We will borrow the notation and some results from Chapter III of Kra [1]. Let \(\Delta \subset D \) be a fundamental domain for \(G \) (see Tsuji [2, section XI.2]). Denote

\[
 \mathcal{O}(D) = \{ \text{holomorphic functions on } D \},
\]

\[
 \|f\|_{q,G} = \left(\int_\Delta |f(z)|^2 \left(1 - |z|^2 \right)^{2q-2} dE(z) \right)^{1/2},
\]

\[
 \mathscr{A}_q^2(D, G) = \{ f \in \mathcal{O}(D) : \|f\|_{q,G} < +\infty \text{ and } f(z) = f(\omega(z)) \cdot \omega'(z)^q \ \forall \omega \in G \}.
\]

The mapping

\[
 f(x) \mapsto f(\phi(z)) \phi'(z)^q, \quad x \in \Omega, \ z \in D,
\]

establishes a Hilbert space isomorphism of \(\mathscr{A}_q^2(\Omega) \) onto \(\mathscr{A}_q^2(D, G) \) [1, section III.6]. It follows that the function \(F_{q,G}(z, y) \), defined by

\[
 F_{q,G}(z, \bar{y}) = K_{\Omega, q}(\phi(z), \bar{\phi(y)}) \cdot \phi'(z)^q \phi'(y)^q, \quad z, y \in D,
\]

is the reproducing kernel for the Hilbert space \(\mathscr{A}_q^2(D, G) \). But, according to section III.5 of [1], the latter reproducing kernel is also given by the Poincaré series

\[
 F_{q,G}(z, \bar{y}) = \sum_{\omega \in G} K_{D, q}(\omega(z), \bar{y}) \omega'(z)^q, \quad z, y \in D,
\]

where \(K_{D, q} \) is the reproducing kernel for the Bergman space \(\mathscr{A}_q^2(D) \) on the unit disc \(D \). Summarizing, we have

\[
 \lim_{q \to +\infty} \frac{K_{\Omega, q}(x, \bar{x}) w(x)^{2q}}{2q} = \lim_{q \to +\infty} \frac{F_{q,G}(z, \bar{y})|\phi'(z)|^{-2q} \cdot (1 - |z|^2)^{2q}|\phi'(z)|^{2q}}{2q}
\]

\[
 = \lim_{q \to +\infty} \frac{(1 - |z|^2)^{2q}}{2q} \sum_{\omega \in G} K_{D, q}(\omega(z), \bar{z}) \omega'(z)^q,
\]
where \(x = \phi(z) \quad (x \in \Omega, \ z \in \mathbb{D}) \). Now it is well known that

\[
K_{\mathbb{D}, q}(y, \overline{z}) = \frac{2q - 1}{\pi} (1 - \overline{z}y)^{-2q}.
\]

Therefore

\[
\lim_{q \to +\infty} \frac{(1 - |z|^2)^{2q}}{2q} \sum_{\omega \in G} K_{\mathbb{D}, q}(\omega(z), \overline{z}) \omega'(z)^q
= \frac{1}{\pi} \lim_{q \to +\infty} \sum_{\omega \in G} \left[(1 - |z|^2)^2 (1 - \overline{z}\omega(z))^{-2} \omega'(z) \right]^q.
\]

For \(a \in \mathbb{D} \), let \(\omega_a \in \text{Aut}(\mathbb{D}) \) be the Möbius transformation given by

\[
\omega_a(y) = \frac{y - a}{1 - \overline{a}y}.
\]

Then

\[
\omega_a'(y) = \frac{1 - |a|^2}{(1 - \overline{a}y)^2}, \quad \omega_a'(0) = 1 - |a|^2.
\]

It follows that

\[
(1 - |z|^2)^2 (1 - \overline{z}\omega(z))^{-2} \omega'(z) = (1 - |z|^2) \cdot \omega_z'(\omega(z)) \cdot \omega'(z)
= \omega_z'(0) \cdot \omega_z'(\omega(z)) \cdot \omega'(z)
= (\omega_z \omega \omega_{-z})'(0).
\]

Let \(\lambda = \omega_z \omega \omega_{-z} \in \text{Aut}(\mathbb{D}) \). By the Schwarz lemma (or direct computation),

\[
|\lambda'(0)| = 1 - |\lambda(0)|^2 \leq 1,
\]

with equality occurring iff \(\lambda(0) = 0 \), i.e. iff \(\omega(z) = z \). Since \(G \) acts freely, this is only possible for \(\omega = \text{id} \). Thus

\[
|\omega_z \omega_{-z} \omega_z'(0)| < 1 \quad \text{for } \omega \in G \setminus \{\text{id}\}.
\]

Let us now make the following elementary observation: whenever \(\{b_{\nu}\}_{\nu \in I} \) is a sequence of complex numbers, indexed by a countable set \(I \), such that

(a) \(\sum_{\nu \in I} |b_{\nu}|^q < +\infty \) for some \(q > 0 \), and
(b) \(|b_{\nu}| < 1 \) for all \(\nu \),

then \(\sum_{\nu \in I} b_{\nu}^q \to 0 \) as \(q \to +\infty \).

Indeed, it follows from (a) that for any \(\epsilon > 0 \) there is at most a finite number of \(b_{\nu} \) with \(|b_{\nu}| > \epsilon \); so there exists \(\nu_0 \in I \) such that \(|b_{\nu_0}| = \sup_I |b_{\nu}| \). Then

\[
\left| \sum_{\nu} b_{\nu}^q \right| \leq |b_{\nu_0}^q| \sum_{\nu} |b_{\nu}/b_{\nu_0}|^q,
\]

and as \(|b_{\nu}/b_{\nu_0}| \leq 1 \) for all \(\nu \), the last sum is a nonincreasing function of \(q \). It follows that \(\sum_{\nu} b_{\nu}^q = O(|b_{\nu_0}|^q) \), and as \(|b_{\nu_0}| < 1 \) by (b), the assertion follows.

Since

\[
\sum_{\omega \in G} |(\omega_z \omega \omega_{-z})'(0)|^2 = \sum_{\omega \in G} (1 - |\omega_z \omega(z)|^2)^2 = \sum_{\omega \in G} \left[\frac{(1 - |z|^2)(1 - |\omega(z)|^2)}{|1 - \overline{z}\omega(z)|^2} \right]^2
\leq \left(\frac{1 + |z|}{1 - |z|} \right)^2 \sum_{\omega \in G} (1 - |\omega(z)|^2)^2
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
is finite by [1, Lemma III.5.2], the above observation can be applied to $I = G \setminus \{\text{id}\}$, $b_\omega = (\omega_z \omega \omega_z)'(0)$, and shows that

$$\sum_{\omega \in G \setminus \{\text{id}\}} [(\omega_z \omega \omega_z)'(0)]^q \to 0 \quad \text{as } q \to +\infty.$$

Consequently,

$$\lim_{q \to +\infty} \sum_{\omega \in G} [(1 - |z|^2)^2(1 - \overline{z} \omega(z))^{-2} \omega'(z)]^q = \lim_{q \to +\infty} \sum_{\omega \in G} [(\omega_z \omega \omega_z)'(0)]^q$$

$$= \lim_{q \to +\infty} [(\omega_z \cdot \text{id} \cdot \omega_z)'(0)]^q$$

$$= 1$$

and the proof is finished.

Problem. In view of the result just proved, the following question now seems to be of some interest. Let F be a positive continuous function on the interval $[0, 1)$ and let K_α be the reproducing kernel for the Bergman space $A^2(D, F(|z|^2)^\alpha dE(z))$. For which F do the functions

$$K_\alpha(z, \overline{z}) F(|z|^2)^\alpha / \alpha$$

converge as $\alpha \to +\infty$, and if they do, what is the limit?

References

MÚ AV ČR, ŽITNÁ 25, 11567 PRAGUE 1, CZECH REPUBLIC
E-mail address: englis@cspgas11.bitnet, englis@earn.cvut.cz