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Abstract. A set M of nonzero integers is said to split a finite abelian group

G if there is a subset S of G for which M • S = G\{0] . If, moreover, each

prime divisor of |G| divides an element of M, we call the splitting purely

singular. It is conjectured that the only finite abelian groups which can be

split by {1, ... , k} in a purely singular manner are the cyclic groups of order

1, k + 1 and 2k + 1 . We show that a proof of this conjecture can be reduced

to a verification of the case gcd(|G|, 6) = 1 .

1. Introduction

A set M of nonzero integers is said to split a finite abelian group G (written

additively) if there is a subset S of G such that every nonzero element of G

can be uniquely expressed in the form m • s, m £ M, s £ S, while 0 has no

such representation. In this case we write M • S = G\{0} and refer to S as a

splitting set for G. Splittings arise very naturally in the context of certain geo-

metric tiling problems, especially that of lattice tiling Z" by certain clusters of

cubes called "crosses" (corresponding to M = {±1 ,±2,..., ±k}) and "semi-

crosses" (corresponding to M = {1,2, ... , k}). The sets {1,2, ... ,k} and

{±1, ±2, ... , ±k} are usually denoted by S(k) and F(k), respectively ("S"
for semicross and " F " for full cross). For details and extensive bibliographies

the reader is referred to [4], [5], [6], [7].

A splitting M • S = G\{0} is called nonsingular if every element of M is

relatively prime to |G|, and purely singular if every prime divisor of |C7| divides

some element of M. As shown in [3], the study of splittings can be reduced to

the study of nonsingular and purely singular splittings.

In this note we restrict our attention to splittings of the form S(k) • S =

C7\{0}. As the nonsingular case is fairly well understood [2], we concentrate

here on singular splittings, which, by the following result of Hickerson, directs

us to the case G = C(m), the cyclic group of order m, m > 1 .

[3, Theorem 2.1.0]. If S(k) or F(k) splits the finite abelian group G purely
singularly, then G is cyclic.
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By taking as splitting set 5 = 0, 5 = {1} , and 5 = {1, -1} , respectively,
one sees that S(k) splits C(l), C(rc4-l),and C(2fc4-1) for every k ; moreover,

the splitting is purely singular precisely when the group has nonprime order. It

is conjectured that every purely singular splitting is of one of these three types.

Conjecture. If S(k) splits the finite abelian group G purely singularly, then G

is one of C(l), C(k + 1), or C(2k + 1).

Remark. The conjecture has been verified by Hickerson for all k < 3000.

In this note we show that the conjecture would be confirmed if one could

show that it holds for cyclic groups whose order is odd and not a multiple of

three.

2. Some preliminary lemmas

Lemma 1. Let S(k) split C(m), and suppose there exist an integer a > 0 and

p prime such that (i) p \ m, (xx) p \ ak+1, and (iii) a\p-l. Then ak + l \m.

Proof. Let S = {si, ... , s„} be a splitting set for the assumed splitting, and

suppose the elements of 5 are arranged so that p \ s¡ for I < i < t and p \ s¡

for t+1 < i < n. We claim that for t + 1 < i < n, \{j: p\jst}\ = ak~^~X) .

This amounts to showing that a = afc~^~') is the largest integer less than or

equal to k which is divisible by p. That a is an integer follows from (iii).

Rewriting the numerator as ak + 1 - p, we see that p \ a by (ii) (and the fact

that gcd(a,p) = 1 from (iii)). Finally, a < k and the next largest integer

divisible by p is a + p > k . From this it is obvious that (p) = {0} U {js¡ : 1 <

; < k, 1 < i < t} U {(hp)s¡: l<h< ak+ap~P ,t+l<i<n}, which gives

nk+l     ....     ,     .       I' ak+1 - p\ .       .
—p— = Ml = 1 + kt + [      ap       ) (n - t).

From this equation it follows that a + akt + t - n = p(a + akt + t - n), hence

n-t = a(l+kt). Replacing n-t by a(l+kt) in the displayed equation yields
m = nk+1 = (ak+l)(tk +1).   D

Remark. Observe that the constant t introduced in the proof of Lemma 1 does

not depend on the choice of prime p satisfying the conditions of the lemma.

Lemma 2.  S(k)  does not split C(m)  in a purely singular manner for m =
(k+l)(2k+l).

Proof (due to D. R. Hickerson). Assume that S(k) splits C(m) with splitting

set 5, i.e., C(m)\{0} = S(k)-S. By Theorem 1.2.1 of [3], the splitting induces
splittings of the subgroups (2k + 1) = C(k + 1) and (k + 1) = C(2k + 1) of
C(m), that is, there exist s{, s2, s3 e 5 such that

S(k) -{sx} = (2k + 1)\{0},        S(k) • {s2, Si} = (k + 1)\{0}.

Set 5 = S\{sx, s2, Si} . Then S(k) • 5 = C(m)\((2k +l)u(k + l)). Observe
that gcd(s, k + 1) = 1 for all 5 e 5. Indeed, if gcd(5, k + 1) = d > 1,
then *#- • s = (k + l)% £ (k + 1), a contradiction as ^ • s £ S(k) -S.

One similarly shows that gcd(s, 2k + I) = I ; thus every s £ S is co-prime

to each of k + 1 and 2k + 1 . Now let a and b be maximal proper divisors
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of k + 1 and 2k + 1, respectively. Then it is immediate that k + 1 \ ab and

2k + 1 \ ab. Thus ab £ C\((2k + I) U (k + I)), so ab = j • s for some

j e 5(fc), s £ S. This means that m \ js - ab, whence ab | js. (Here /s
denotes the ordinary integer product, in contrast to j • s which denotes the

group sum of j copies of s.) As ab is co-prime to 5 we now have ab \ j ;

in particular, ab < j < k. But, since the splitting is purely singular, k + 1

and 2k + 1 are each composite, hence a > Vk + 1 and b > \/2k + 1. Thus

ab > yj(k + l)(2k + 1), a contradiction.   D

The following lemma generalizes a result of Szabó (see Theorem 2.4 of [8]).

Lemma 3. S(k) does not split C(m) in a purely singular manner, where m =

(2k + I)2.

Proof. If 2k +1 = pr for some prime p , the result follows from Theorem 3.2 of

[9]. Assuming otherwise, we write 2k + 1 = ab , where a > b and gcd(a, b) =

1. In particular, this implies 2k+1 < a2 < (2k +1)2. Now suppose S(k) splits
C(m) with splitting set 5. As in the proof of Lemma 2, this splitting of C(m)
induces one on its subgroup (2k +1) = C(2k+1), so there exist Sx, s2 £ S such

that S(k)-{sx,s2} = (2k +1 )\{0}. Set 5 = 5\{j, , s2} • Clearly a2 i (2k+l),
hence a2 = j-s for some j £ S(k), s £ S. Proceeding as in the proof of Lemma

2, we obtain a2 \ j, and so the contradiction 2k + 1 < a2 < j < k .   G

The following lemma is a special case of Theorem 1.2.1 of [3].

Lemma 4. If S(k) splits each of C(m) and C(t) for t dividing m, then S(k)
splits C(m/t).

3. Main results

Theorem 5. Suppose S(k) splits C(m) with k + 1 composite. Then either

(i) gcd(k + 1, m) = 1, or
(ii) k + 1 divides m and gcd(k + 1, -¡^) = 1.

Proof. Assume 'not (i)' so that gcd(/c 4- 1, m) > 1 . By Lemma 1 (with a = 1

and p any prime divisor of m), we see that k + 1 divides m. As S(k)

splits each of C(m) and C(k + 1), it splits C(^) by Lemma 4. Thus, if
gcd(ic 4- 1, £^t) > 1 we can repeat the above argument to conclude that S(k)

splits C((k™2). But then, again by Lemma 4, S(k) splits C((k + I)2). This,

however, contradicts Theorem 2.1 of [1], which states that such a splitting can

occur only if k + 1 is prime.   D

Theorem 6. Suppose S(k) splits C(m) with 2k + 1 composite. Then either

(i) gcd(2fc + 1, m) = I, or
(ii) 2k + 1 divides m and gcd(2/c + 1, j^) = 1 ■

Proof. Again, assume 'not (i)' so that gcd(2/c 4-1, m) > 1. By Lemma 1 (with

a = 2 and p any odd prime divisor of m), we see that 2/c + 1 divides m.

As S(k) splits each of C(m) and C(2Â: 4- 1), it splits C(jj^). Thus, if

gcd(2ic 4- 1, jhTx) > ! we repeat the above argument to conclude that S(k)

splits C((2fc+i)0» so it also splits C((2k + I)2). But this is in violation of

Lemma 3. The result follows.   D



2958 A. J. WOLDAR

Theorem 7. Let S(k) split C(m) in a purely singular manner. Then either
(i) gcd(k + 1, m) = 1, or
(ii) gcd(2/c + 1, m) = 1.

Proof. If gcd(k+1, m) > 1 and gcd(2ic+ 1, m) > 1 , then, by Theorems 5 and
6, respectively, we have k + I \ m and 2/c 4- 1 | m . As /c 4- 1 | m, S(k) splits

C(j^), and as 2k + 1 | ^ , 5(fc) splits C((¿+1)%¿+1)). But then 5(£) splits

C((k + l)(2k + 1)), a contradiction to Lemma 2.   D

Theorem 8. Suppose it is proved for m odd and not a multiple of three (i.e., m

congruent to ±1 modulo 6) that S(k) splits C(m) in a purely singular manner

only in the cases m = 1, k + 1, and 2k + 1. F/ze«, yôr any m, these are the

only such splittings.

Proof. Let m be minimal of the form nk + 1, n > 3, such that 5(/c) splits

C(m) in a purely singular manner. By assumption, either 2 | m or 3 | m. If

2 | m, then & is necessarily odd, and gcd(/c + I, m) > 1 . By Lemma 4, S(k)

splits C(^j-), whence, by minimality of m , ^ = k + 1 or 2/c + 1. The

former is ruled out by Theorem 5(ii), the latter by Theorem 7. If 3 | m , then

certainly 3 \ k, so either 3 | /c + 1 or 3 | 2Ä: 4-1. If 3|/c4-l,a contradiction

is obtained as in the previous argument. If 3 | 2/c + 1, then Lemma 4 and the

minimality of m together force ¿Err = k + 1 or 2k + 1. The former is ruled

out by Theorem 7, the latter by Theorem 6.   D

We end with some examples which illustrate how our techniques can be ap-

plied to specific cases, namely /c = 11, 13 and 17 .

Problem. Determine all purely singular splittings by 5(11).

Any purely singular splitting of C(m) by 5(11) must satisfy m = 2a • 3* • 5C •

ld for certain nonnegative integers a, b, c and d. As k + 1 = 12, Theorem

5 tells us that 2a • 3b = 1 or 12. If c > 1, we can apply Lemma 1 with p = 5

and a = 4. The result is that 45 | m. But this contradicts b < 1 ; so c = 0.

By Lemma 4, we now have that 5(11) splits C(ld). But, if d > 1 , the group

C(ld) has precisely 6 • ld~x generators. As all generators are of the form j • s

for j £ 5(11), j / 7 , and s £ S, 7 {s , we see that 10 must divide 6 • ld~x , a
contradiction. Thus the only groups split by 5( 11 ) in a purely singular manner

are C(l) and C(12).

Problem. Determine all purely singular splittings by 5(13).

Any purely singular splitting of C(m) by 5(13) must satisfy m = 2a • 3b •

5C • ld • 1 Ie for certain nonnegative integers a, b, c, d and e . As k + 1 = 14,

Theorem 5 asserts that 2a • ld = 1 or 14. As 2k + 1 = 27, we have 3* = 1 or

27 by Theorem 6. If e > 1, apply Lemma 1 with a = 5 and p = 11. This
gives 66 ] m, which contradicts Theorem 7; thus e = 0. By Theorem 7 we

now have m = 2 • 5e • 7 or m = 33 • 5e, so, in either case, S(k) splits C(5C).

But, if c > 1, the group C(5C) has 4 • 5C_1 generators. As all generators are

of the form j ■ s for j e 5( 13), j ^ 5 , 10, and 5 e 5, 5 15, we see that 11
must divide 4 • 5C_1 , a contradiction. Thus the only groups split by 5(13) in

a purely singular manner are C(l), C(14) and C(27).

Problem. Determine all purely singular splittings by 5( 17).
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Any purely singular splitting of C(m) by 5(17) must satisfy m = 2a • 3* •

5e. 7d . \le . \3f for certain nonnegative integers a, b, c, d, e and /. As

k + 1 = 18, Theorem 5 asserts that 2a • 3* = 1 or 18. As 2/c 4- 1 = 35, we
have 5C • ld = 1 or 35 by Theorem 6. If / > 1 , apply Lemma 1 with a = 3
and p = 13 ; this gives 52 | m, a contradiction as a < 1. Thus f = 0. We

now see from Theorem 7 that m = 2 • 32 • 1 Ie or m = 5 • 7 • 1 Ie. In either

case 5(17) must split C(l Ie). If e > 1, then the group C(ll') has 10-IF"1

generators. As argued above, this implies 16 | 10-1 Ie-1, a contradiction. Thus

the only groups split by 5(17) in a purely singular manner are C(l), C(18)

and C(35).
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