On the existence of periodic solutions for nonconvex-valued differential inclusions in
Authors:
Shou Chuan Hu and Nikolaos S. Papageorgiou
Journal:
Proc. Amer. Math. Soc. 123 (1995), 3043-3050
MSC:
Primary 34A60; Secondary 34B15, 34C25
DOI:
https://doi.org/10.1090/S0002-9939-1995-1301503-6
MathSciNet review:
1301503
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we investigate the existence of periodic solutions for differential inclusions with nonconvex-valued orientor field. Using a tangential condition and directionally continuous selectors, we establish the existence of periodic trajectories.
- [1] Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330
- [2] Dimitri P. Bertsekas and Steven E. Shreve, Stochastic optimal control, Mathematics in Science and Engineering, vol. 139, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. The discrete time case. MR 511544
- [3] Alberto Bressan, Directionally continuous selections and differential inclusions, Funkcial. Ekvac. 31 (1988), no. 3, 459–470. MR 987798
- [4] Francesco S. De Blasi and Józef Myjak, On the solutions sets for differential inclusions, Bull. Polish Acad. Sci. Math. 33 (1985), no. 1-2, 17–23 (English, with Russian summary). MR 798723
- [5] Lech Górniewicz, On the solution sets of differential inclusions, J. Math. Anal. Appl. 113 (1986), no. 1, 235–244. MR 826673, https://doi.org/10.1016/0022-247X(86)90347-1
- [6] Georges Haddad and Jean-Michel Lasry, Periodic solutions of functional-differential inclusions and fixed points of 𝜎-selectionable correspondences, J. Math. Anal. Appl. 96 (1983), no. 2, 295–312. MR 719317, https://doi.org/10.1016/0022-247X(83)90042-2
- [7] Fumio Hiai and Hisaharu Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149–182. MR 0507504, https://doi.org/10.1016/0047-259X(77)90037-9
- [8] Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- [9] Jean-Michel Lasry and Raoul Robert, Degré topologique pour certains couples de fonctions et applications aux équations différentielles multivoques, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 4, Aii, A163–A166. MR 0436196
- [10] Jack W. Macki, Paolo Nistri, and Pietro Zecca, The existence of periodic solutions to nonautonomous differential inclusions, Proc. Amer. Math. Soc. 104 (1988), no. 3, 840–844. MR 931741, https://doi.org/10.1090/S0002-9939-1988-0931741-X
- [11] J.-J. Moreau, Intersection of moving convex sets in a normed space, Math. Scand. 36 (1975), 159–173. Collection of articles dedicated to Werner Fenchel on his 70th birthday. MR 0442644, https://doi.org/10.7146/math.scand.a-11569
- [12] John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443
- [13] Nikolas S. Papageorgiou, On the existence of 𝜓-minimal viable solutions for a class of differential inclusions, Arch. Math. (Brno) 27B (1991), 175–182. MR 1189213
- [14] Sławomir Plaskacz, Periodic solutions of differential inclusions on compact subsets of 𝑅ⁿ, J. Math. Anal. Appl. 148 (1990), no. 1, 202–212. MR 1052055, https://doi.org/10.1016/0022-247X(90)90038-H
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A60, 34B15, 34C25
Retrieve articles in all journals with MSC: 34A60, 34B15, 34C25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1995-1301503-6
Keywords:
Scorza-Dragoni property,
directionally continuous selector,
lower semi-continuous multifunction,
periodic solution,
tangent cone,
tangential condition
Article copyright:
© Copyright 1995
American Mathematical Society