Compactifications of the ray with the arc as remainder admit no $n$-mean
HTML articles powered by AMS MathViewer
- by M. M. Awartani and David W. Henderson PDF
- Proc. Amer. Math. Soc. 123 (1995), 3213-3217 Request permission
Abstract:
An n-mean on X is a function $F:{X^n} \to X$ which is idempotent and symmetric. In 1970 P. Bacon proved that the $\sin (1/x)$ continuum admits no 2-mean. In this paper, it is proved that if X is any metric space which contains an open line one of whose boundary components in X is an arc, then X admits no n-mean, $n \geq 2$.References
-
G. Auman, Über Raüme mit Mittlebildungen, Math. Ann. 119 (1943), 210-215.
- Marwan M. Awartani, An uncountable collection of mutually incomparable chainable continua, Proc. Amer. Math. Soc. 118 (1993), no. 1, 239–245. MR 1092914, DOI 10.1090/S0002-9939-1993-1092914-3
- Philip Bacon, An acyclic continuum that admits no mean, Fund. Math. 67 (1970), 11–13. MR 261555, DOI 10.4064/fm-67-1-11-13
- B. Eckmann, T. Ganea, and P. J. Hilton, Generalized means, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 82–92. MR 0169239
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 S. Nadler, Embedding certain compactifications of half ray, Fund. Math. 70 (1973), 217-225. L. Pontryagin, Sur une hypothése fondamentale de la théorie de la dimension, Comptes Rendus 190 (1920), 1105-1107.
- Kermit Sigmon, On the existence of a mean on certain continua, Fund. Math. 63 (1968), 311–319. MR 236305, DOI 10.4064/fm-63-3-311-319
- Kermit Sigmon, Acyclicity of compact means, Michigan Math. J. 16 (1969), 111–115. MR 259899
- A. D. Wallace, Acyclicity of compact connected semigroups, Fund. Math. 50 (1961/62), 99–105. MR 132533, DOI 10.4064/fm-50-2-99-105
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3213-3217
- MSC: Primary 54F15; Secondary 54D35
- DOI: https://doi.org/10.1090/S0002-9939-1995-1307490-9
- MathSciNet review: 1307490