PROJECTIONS IN SOME SIMPLE C*-CROSSED PRODUCTS

JA A JEONG AND GIE HYUN PARK

(Communicated by Palle E. T. Jorgensen)

Abstract. Let \(\alpha \) be an outer action by a finite group \(G \) on a simple C*-algebra \(A \). If each hereditary C*-subalgebra of \(A \) has an approximate identity consisting of projections, then every hereditary C*-subalgebra of the crossed product \(A \times_\alpha G \) has a projection.

1. Introduction

A C*-algebra \(A \) is said to have FS if the set of all selfadjoint elements with finite spectra (as an element of \(\hat{A} \), the unital C*-algebra obtained by adjoining the unit to \(A \)) is norm dense in \(A_{sa} \), equally, if every hereditary C*-subalgebra of \(A \) has an approximate identity consisting of projections [4]. This class of C*-algebras includes AF-algebras, von Neumann algebras [4], purely infinite simple C*-algebras [10], etc. A purely infinite C*-algebra is a C*-algebra such that any of its hereditary C*-subalgebra is infinite, that is, has an infinite projection. If each hereditary C*-subalgebra of a C*-algebra \(A \) has a non-zero projection, then we say that \(A \) has SP. There are many examples of C*-algebras which do not have FS but SP. For example, consider a purely infinite C*-algebra \(C \otimes \mathcal{K} \), where \(\mathcal{K} \) is the algebra of compact operators on a separable infinite-dimensional Hilbert space \(\mathcal{H} \) and \(C \) is the Calkin algebra \(B(\mathcal{H})/\mathcal{K} \). Then its multiplier algebra \(M(C \otimes \mathcal{K}) \) is also a purely infinite C*-algebra which does not have FS [11] but has SP, since the multiplier algebra of a simple (or primitive, in general) C*-algebra with SP obviously has SP.

While there are various examples of projectionless simple C*-algebras, a large class of simple C*-algebras are also known to contain projections [2].

In [3] Blackadar and Kumjian construct a simple C*-algebra which does not have FS but SP. We do not know whether the two conditions FS and SP are equivalent or not for infinite simple C*-algebras. Both conditions mean that a C*-algebra abounds in its projections so that if \(A \) is an infinite-dimensional simple C*-algebra with SP (or FS), then \(A \) contains no minimal projections.

We show in this short note that the crossed product \(A \times_\alpha G \) by an outer action \(\alpha \) of a finite group \(G \) has SP whenever \(A \) is a simple C*-algebra with FS. In [6,
Example 9, Elliott showed that there is an action of \(\mathbb{Z}_2 \) on a simple \(C^* \)-algebra which does not have FS but the crossed product does. So by Takesaki-Takai duality, it follows that the property FS is not necessarily preserved in crossed products by finite groups.

2. Projections in simple \(C^* \)-crossed products

Throughout this paper \(A_z \) denotes the hereditary \(C^* \)-subalgebra of \(A \) generated by a positive element \(z \) of \(A \).

Lemma 1. Let \(A \) be a simple \(C^* \)-algebra with FS and \(\alpha \) an outer automorphism of \(A \). Then for any non-zero hereditary \(C^* \)-subalgebra \(B \) of \(A \), it follows that

\[
\inf \{\|\rho\alpha(p)\| : p \text{ is a projection of } B\} = 0.
\]

Proof. For any small positive number \(\varepsilon > 0 \), we know from [7, Lemma 1.1] that there is a positive element \(z \) in \(B \) of norm 1 with \(\|z\alpha(z)\| < \varepsilon \). Since \(A \) has FS, we may assume that the spectrum of \(z \) is finite. Let \(p = \chi_{\{1\}}(z) \) so that \(p \) is a projection such that \(z \geq p \). Hence

\[
\|p\alpha(p)\| \leq \|z\alpha(z)\| < \varepsilon.
\]

Lemma 2. Let \(\{p_i\}_{i=1}^n \) be finitely many projections in a simple \(C^* \)-algebra \(A \) such that \(\|p_ip_j\| < \frac{1}{2^n}, \ i \neq j \). Then their supremum \(\vee p_i \) (in \(A^{**} \)) is contained in \(A \).

Proof. Recall [5, Lemma 2.7] that if \(e \) and \(f \) are projections in a \(C^* \)-algebra \(A \) with \(\|ef\| < 1 \), then \(e \vee f \in A \). So it suffices to show that

\[
\|p_k(p_1 \vee \cdots \vee p_{k-1})\| < 1, \quad 3 \leq k \leq n.
\]

Consider a \(C^* \)-algebra \(A \) as a subalgebra of \(A^{**} = (\pi_u(A)^{\sigma-wk} \subset B(H) \), where \((\pi_u, \mathcal{H}) \) is the universal representation of \(A \). Then the supremum \(\vee p_i \) of \(\{p_i\} \) is the projection onto the closed subspace \(\{p_1\xi_1 + p_2\xi_2 + \cdots + p_n\xi_n | \xi_i \in \mathcal{H} \}^- \). Let

\[
\xi = p_1\xi_1 + \cdots + p_{k-1}\xi_{k-1}
\]

be a unit vector in \((p_1 \vee \cdots \vee p_{k-1})\mathcal{H} \). Then for \(\varepsilon = \frac{1}{2^n} > 0 \), we have

\[
\|p_k(p_1 \vee \cdots \vee p_{k-1})\xi\|^2
\]

\[
= \|p_k(p_1\xi_1 + \cdots + p_{k-1}\xi_{k-1})\|^2
\]

\[
= \sum_{i=1}^{k-1} \|p_kp_i\xi_i\|^2 + \sum_{i \neq j} (p_kp_i\xi_i|p_kp_j\xi_i)
\]

\[
\leq \varepsilon^2 \sum_{i=1}^{k-1} \|p_i\xi_i\|^2 + \varepsilon^2 \sum_{i \neq j} \|p_i\xi_i\|\|p_j\xi_j\|.
\]
On the other hand
\[1 = \|\xi\|^2 = \left(\sum_{i=1}^{k-1} \|p_i\xi_i\|^2 + \sum_{i\neq j} \langle p_i\xi_i | p_j\xi_j \rangle \right) \]
\[\geq \sum_{i=1}^{k-1} \|p_i\xi_i\|^2 - \varepsilon \sum_{i\neq j} \|p_i\xi_i\|\|p_j\xi_j\| \]
\[= \sum_{i=1}^{k-1} \|p_i\xi_i\|^2 - \varepsilon \left((k-2) \sum_{i=1}^{k-1} \|p_i\xi_i\|^2 - \sum_{i<j} (\|p_i\xi_i\| - \|p_j\xi_j\|)^2 \right) \]
\[= (1 - (k-2)\varepsilon) \sum_{i=1}^{k-1} \|p_i\xi_i\|^2 + \varepsilon \sum_{i<j} (\|p_i\xi_i\| - \|p_j\xi_j\|)^2 \]
\[\geq (1 - (k-2)\varepsilon) \sum_{i=1}^{k-1} \|p_i\xi_i\|^2, \]
and hence we have
\[\sum_{i=1}^{k-1} \|p_i\xi_i\|^2 \leq \frac{1}{1 - (k-2)\varepsilon}, \tag{2} \]
and for all \(i, \ 1 \leq i \leq k - 1, \)
\[\|p_i\xi_i\| \leq \frac{1}{\sqrt{1 - (k-2)\varepsilon}}. \tag{3} \]

Therefore it follows from (1), (2), and (3) that
\[\|p_k(p_1 \vee \cdots \vee p_{k-1})\xi\|^2 \leq \varepsilon^2 \frac{1}{1 - (k-2)\varepsilon} + \varepsilon^2 \sum_{i\neq j} \frac{1}{1 - (k-2)\varepsilon} \]
\[= \frac{\varepsilon^2}{1 - (k-2)\varepsilon} + \frac{(k-1)(k-2)\varepsilon^2}{1 - (k-2)\varepsilon} \]
\[\leq \frac{\varepsilon^2}{1 - n\varepsilon} + \frac{n^2\varepsilon^2}{1 - n\varepsilon} \]
\[= \frac{1}{2n^2} + \frac{1}{2} < 1. \]

An action \(\alpha \) of a group \(G \) on a \(C^* \)-algebra \(A \) is said to be outer if each automorphism \(\alpha_g \) is outer for each \(g \neq 1 \), where \(1 \) denotes the unit of \(G \).

Theorem 3. If \(\alpha \) is an outer action by a finite group \(G \) on a simple \(C^* \)-algebra \(A \) with FS, then the crossed product \(A \times_\alpha G \) has SP.

Proof. The fixed point algebra \(A^\alpha \) can be identified as a hereditary \(C^* \)-subalgebra of the crossed product \(A \times_\alpha G \) [8] which is simple [7, Theorem 3.1]. If \(B \) is any non-zero hereditary \(C^* \)-subalgebra of \(A \times_\alpha G \), then we can find a unitary \(u \) in the multiplier algebra \(M(A \times_\alpha G) \) of \(A \times_\alpha G \) such that \(uBu^* \cap A^\alpha \neq 0 \) [9, Lemma 3.4] since \(M(A \times_\alpha G) \) is primitive, that is, it does not have two orthogonal non-zero ideals. Therefore it suffices to show that \(A^\alpha \) has SP. For any non-zero positive element \(z \) in \(A^\alpha \) consider the hereditary \(C^* \)-subalgebra
A_z of A. Then A_z is invariant under the action α. Put $G = \{1, g_1, \ldots, g_n\}$. We can choose a projection p_1 in A_z such that $\|p_1\alpha_{g_1}(p_1)\| < \varepsilon$ for sufficiently small $\varepsilon > 0$ by Lemma 1. Since the automorphism α_{g_2} is outer, the hereditary C^*-subalgebra A_{p_1} has a projection p_2 such that $\|p_2\alpha_{g_2}(p_2)\| < \varepsilon$, so that we have $\|p_2\alpha_{g_1}(p_2)\| < \varepsilon$. By repeating this process, we can take a projection p in A_z satisfying

$$\|(\alpha_s(p)\alpha_t(p))\| < \varepsilon, \quad s \neq t, \ s, t \in G.$$

Lemma 2 says that their supremum $P = \vee_{g \in G} \alpha_g(p)$ belongs to A_z since A_z is α-invariant. Note that P is the smallest projection e in A^{**} satisfying

$$(*) \quad e(p + \alpha_{g_1}(p) + \cdots + \alpha_{g_n}(p)) = p + \alpha_{g_1}(p) + \cdots + \alpha_{g_n}(p).$$

If a projection e satisfies $(*)$, then clearly so does $\alpha_g(e)$, $g \in G$. Suppose that $\alpha_g(P)$, $g \in G$, has a proper subprojection e for which $(*)$ holds. Then $\alpha_{g^{-1}}(e)$ is a proper subprojection of P satisfying $(*)$, a contradiction. Since $(*)$ also holds for $\alpha_g(P)$, we conclude that $P = \alpha_g(P)$ and P is the desired projection in $(A^a)_z$, a hereditary C^*-subalgebra of A^a.

Remark 4. (1) It is well known that a C^*-algebra A has FS if and only if $A \otimes \mathcal{A}$ has FS [4]. As was noted in the proof of Theorem 3, a simple C^*-algebra A has SP if and only if A has a non-zero hereditary C^*-subalgebra B with SP. Hence it follows that a simple C^*-algebra A has SP if and only if $A = \alpha_g(P)$ and P is the desired projection in $(A^a)_z$.

(2) It is not known whether an infinite simple C^*-algebra is purely infinite or not. So it would be interesting to investigate the pure infiniteness of the crossed product $A \times_{\alpha} G$ in Theorem 3 when A is a purely infinite simple C^*-algebra since $A \times_{\alpha} G$ is an infinite simple C^*-algebra. In fact, it suffices to show that each projection $\vee_{g \in G} \alpha_g(p)$ constructed in the proof of Theorem 3 is infinite in $(A^a)_z$.

REFERENCES

GLOBAL ANALYSIS RESEARCH CENTER, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA

Current address, J. A Jeong: Department of Mathematics, Kyung Hee University, 1 Hoegi-dong, Dongaemoon-gu, 130-701 Seoul, Korea

E-mail address, J. A Jeong: jajeong@math.snu.ac.kr