ON THE BETTI NUMBER
OF THE IMAGE OF A CODIMENSION- k IMMERSION
WITH NORMAL CROSSINGS

CARLOS BIASI AND OSAMU SAEKI

(Communicated by Thomas G. Goodwillie)

ABSTRACT. Let $f: M \to N$ be a codimension-k immersion with normal crossings of a closed m-dimensional manifold. We show that f is an embedding if and only if the $(m-k+1)$-th Betti numbers of M and $f(M)$ coincide, under a certain condition on the normal bundle of f.

1. INTRODUCTION

Let $f: M \to N$ be a codimension-k C^1-immersion with normal crossings, where M is a closed m-dimensional manifold and N is an $(m+k)$-dimensional manifold ($k \geq 1$). In [BR, BMS1, BMS2], it is shown that when $k = 1$, $H^1(N; Z_2) = 0$, M is orientable, and f is not an embedding, then

$$\beta_0(N - f(M)) \geq 3,$$

where β_i denotes the i-th Betti number in Z_2-coefficient (see also [S]). This is equivalent to showing that f is an embedding if and only if $\beta_m(f(M)) = \beta_m(M)$ (see [BMS2, Lemma 2.2]). In this paper we generalize this result, showing the following.

Theorem 1.1. Let $f: M \to N$ be a codimension-k C^1-immersion with normal crossings, where M is a closed m-dimensional manifold. Then f is an embedding if and only if

$$\beta_{m-k+1}(f(M)) = \beta_{m-k+1}(M) \quad \text{and} \quad v_k(f) = w_k(v_f),$$

where $v_k(f) = f^* \circ \beta(\Omega) \in H^k(M; Z_2)$, $\Omega \in H^k(N, N - f(M); Z_2)$ is the transverse class defined in [He], $\beta: H^k(N, N - f(M); Z_2) \to H^k(N; Z_2)$ is the homomorphism induced by the inclusion, and $w_k(v_f) \in H^k(M; Z_2)$ is the top Stiefel-Whitney class of the normal bundle v_f of the immersion f.

Note that, when $k = 1$, $H^1(N; Z_2) = 0$, and M is orientable, we always have $v_k(f) = w_k(v_f) = 0$.

In particular, we have the following.

Received by the editors November 18, 1993 and, in revised form, April 14, 1994.

1991 Mathematics Subject Classification. Primary 57R42; Secondary 57R40.

The second author is partly supported by FAPESP, CCInt-USP, and CNPq.

©1995 American Mathematical Society

3549
Corollary 1.2. Let $f: M \to N$ be a codimension-k C^1-immersion with normal crossings, where M is a closed m-dimensional manifold. Suppose that either $f^*: H^k(N; \mathbb{Z}_2) \to H^k(M; \mathbb{Z}_2)$ or $f_*: H_m(M; \mathbb{Z}) \to H_m(N; \mathbb{Z}_2)$ is the zero map. Then f is an embedding if and only if
\[\beta_{m-k+1}(f(M)) = \beta_{m-k+1}(M) \quad \text{and} \quad w_k(\nu_f) = 0. \]

Note that the top Stiefel-Whitney class $\omega_k(\nu_f)$ of the normal bundle ν_f is the modulo 2 reduction of the Euler class, which is the obstruction to the existence of a nowhere zero cross section. Note also that $w_k(\nu_f)$ depends only on the homotopy class of f.

As to the Betti number of the complement of the image of an immersion, we have the following.

Corollary 1.3. Let $f: M \to N$ be a codimension-k C^1-immersion with normal crossings, where M is a closed m-dimensional manifold, $\beta_k(N) = \beta_{2k-1}(N) = \beta_{2k-2}(N) = 0$, and $w_k(\nu_f) = 0$. Here β_{2k-2} denotes the dimension of the reduced $(2k-2)$-th homology group in \mathbb{Z}_2-coefficient. Then f is an embedding if and only if $\beta_{2k-2}(N - f(M)) = \beta_{k-1}(M)$.

Note that Corollary 1.3 is a generalization of the results in [BR, BMS1, BMS2] concerning the case $k = 1$ (see also [S]).

In the following, all the homology and cohomology groups are with \mathbb{Z}_2-coefficients.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Set $A = \{x \in M: f^{-1}(f(x)) \neq \{x\}\}$ and $B = f(A)$. Note that A and B are ANR. We suppose that f is not an embedding; i.e., $A \neq \emptyset$. Consider the following diagram of homologies with exact rows:

\[
\begin{array}{ccccccccc}
\cdots & \to & H_i(A) & \to & H_i(M) & \to & H_i(M, A) & \to & H_{i-1}(A) & \to & \cdots \\
\downarrow & & \\
\cdots & \to & H_i(B) & \to & H_i(f(M)) & \to & H_i(f(M), B) & \to & H_{i-1}(B) & \to & \cdots \\
\end{array}
\]

where the vertical homomorphisms are induced by f. Note that the homomorphism $f_*: H_i(M, A) \to H_i(f(M), B)$ is an isomorphism by excision. Then it is not difficult to extract the following exact sequence:

\[
\cdots \to H_{m-k+1}(A) \to H_{m-k+1}(B) \oplus H_{m-k+1}(M) \to H_{m-k+1}(f(M)) \to H_{m-k}(A) \to H_{m-k}(B) \oplus H_{m-k}(M) \to \cdots.
\]

Since A and B are of dimension $m - k$, we have the exact sequence

\[
0 \to H_{m-k+1}(M) \to H_{m-k+1}(f(M)) \to H_{m-k}(A) \to H_{m-k}(B) \oplus H_{m-k}(M) \to \cdots,
\]

where $\alpha = (f|A)_* \oplus j_*$ and $j: A \to M$ is the inclusion map. Then we have

\[
\beta_{m-k+1}(f(M)) = \beta_{m-k+1}(M) + \dim \ker \alpha.
\]

Now consider the fundamental class $[A] \in H_{m-k}(A)$, which is known to exist and to be non-zero ([He]). Then we have $(f|A)_*[A] = 0$, since $f|A$ is a double cover away from the codimension-k set $\{x \in A: \#(f^{-1}(f(x))) \geq 3\}$, where $\#$
denotes the cardinality. On the other hand, by Herbert [He], we have a formula for calculating $j_*[A]$, which is

$$j_*[A] = D_M \circ f^* \circ \beta(\Omega_1) - D_M(w_k(\nu_f)) = D_M(v_k(f) - w_k(\nu_f)),$$

where $D_M: H^k(M) \to H_{m-k}(M)$ is the Poincaré dual, $\beta: H^k(N, N-f(M)) \to H^k(N)$ is the homomorphism induced by the inclusion $(N, \emptyset) \to (N, N-f(M))$, and $\Omega_1 \in H^k(N, N-f(M))$ is the transverse class defined in [He]. (For this formula, see also [W, (18.5)].) Now suppose that $v_k(f) = w_k(\nu_f)$. Then we have $j_*[A] = 0$. This implies that

$$\beta_{m-k+1}(f(M)) = \beta_{m-k+1}(M) + \dim \ker \alpha > \beta_{m-k+1}(M),$$

since $[A]$ is a non-zero element of $\ker \alpha$. Thus, if f is not an embedding, we have

$$\beta_{m-k+1}(f(M)) > \beta_{m-k+1}(M)$$

or

$$v_k(f) \neq w_k(\nu_f).$$

On the other hand, if f is an embedding, we clearly have

$$\beta_{m-k+1}(f(M)) = \beta_{m-k+1}(M).$$

Furthermore, the formula of Herbert [He] cited above shows $v_k(f) = w_k(\nu_f)$. This completes the proof of Theorem 1.1

Proof of Corollary 1.2. If $f^*: H^k(N) \to H^k(M)$ is the zero map, it is easy to see that $v_k(f) = 0$, by the definition of $v_k(f)$. Thus, for the proof of Corollary 1.2, we have only to show that, if $f_*: H_m(M) \to H_m(N)$ is the zero map, then $v_k(f) = 0$. Let

$$D_1: H^k(N, N-f(M)) \to H_m(f(M))$$

and

$$D_2: H_m(N, N-f(M)) \to H^k(f(M))$$

be the duality isomorphisms. Furthermore, we denote by $i: f(M) \to N$ and $l: (N, \emptyset) \to (N, N-f(M))$ the inclusion maps. First note that $D_1(\Omega_1) = f_*[M] \in H_m(f(M))$ by [He, Proposition 4.1], where $[M] \in H_m(M)$ is the fundamental class of M. Then we have

$$v_k(f) = f^* \circ \beta(\Omega_1) = f^* \circ (l \circ i)^*(\Omega_1) = f^* \circ D_2 \circ (l \circ i)_* \circ D_1(\Omega_1) = f^* \circ D_2 \circ (l \circ i)_*(f_*[M]) = f^* \circ D_2 \circ l_*(f_*[M]) = 0,$$

since $f_*[M] = 0 \in H_m(N)$ by our hypothesis. This completes the proof.

Remark 2.1. We can interpret the cohomology classes $v_k(f)$ and $w_k(\nu_f) \in H^k(M)$ geometrically as follows. Let $\gamma \in H_k(M)$ be an arbitrary homology class and $C (\subset M)$ a singular cycle representing γ. Then we see that $\langle v_k(f), \gamma \rangle$ is equal to the modulo 2 intersection number of $f(M)$ and $f(C)$ in N, where we move $f(C)$ slightly so that it intersects $f(M)$ transversely. On the other hand, $\langle w_k(\nu_f), \gamma \rangle$ is equal to the modulo 2 self-intersection number of C in
Figure 1

the total space of $i^*\nu_f$, where $i: C \rightarrow M$ is the inclusion map. In other words,
\[\langle w_k(\nu_f), \gamma \rangle \] is equal to the modulo 2 intersection number of $f(M)$ and $f(C)$ in N off the self-intersection of f.

Remark 2.2. The condition about the top Stiefel-Whitney class of the normal bundle ν_f of f is necessary in Theorem 1.1 and Corollaries 1.2 and 1.3. For example, consider the immersion with normal crossings $f: K \rightarrow \mathbb{R}^3$ as in Figure 1, where K is the Klein bottle. We see that the immersion f is not an embedding, but that
\[\beta_2(f(K)) = \beta_1(K) = 1. \]

Note that, in this example, we have $0 = v_1(f) \neq w_1(\nu_f)$. Furthermore, Theorem 1.1 implies that, for any immersion $g: K \rightarrow N$ with normal crossings into a 3-manifold N with $g(K)$ homeomorphic to $f(K)$, $v_1(g)$ never coincides with $w_1(\nu_g)$.

Remark 2.3. Suppose that there exist integers p and q such that $q \leq p + 1$, $p + q = k$, $f^*(w_i(N)) = 0$ ($0 < i < q$), and $w_j(M) = 0$ ($0 < j \leq p$), where w_i denotes the i-th Stiefel-Whitney class. Then we have $f^*(w_k(N)) = w_k(M) + w_k(\nu_f)$. This can be proved as follows. By the definition of the normal bundle of an immersion, we have
\[f^*(w(N)) = w(M) \cup w(\nu_f), \]
where w denotes the total Stiefel-Whitney class. Then we have
\[w(\nu_f) = f^*(w(N)) \cup (w(M))^{-1}, \]
which implies that $w_i(\nu_f) = 0$ for $0 < i < q$. Then we have
\[f^*(w_k(N)) = w_k(M) + w_k(\nu_f). \]

Thus, if in addition we have $w_k(M) = f^*(w_k(N)) = 0$, then we have $w_k(\nu_f) = 0$. For example, if $k = 1$ and M and N are orientable, $w_1(\nu_f)$ always vanishes. If $k = 2$ and M and N are spin manifolds, $w_2(\nu_f)$ always vanishes.

Proof of Corollary 1.3. First note that, since $H_k(N) = 0$, the hypotheses of Corollary 1.2 are satisfied for f. Now consider the following exact sequence of homology:
\[\tilde{H}_{2k-1}(N) \rightarrow H_{2k-1}(N, N - f(M)) \rightarrow \tilde{H}_{2k-2}(N - f(M)) \rightarrow \tilde{H}_{2k-2}(N). \]
Note that
\[\tilde{H}_{2k-1}(N) = 0, \quad H_{2k-1}(N, N - f(M)) \cong H^{m-k+1}(f(M)), \]
and
\[\tilde{H}_{2k-2}(N) = 0. \]
Thus we have
\[\tilde{\beta}_{2k-2}(N - f(M)) = \beta_{m-k+1}(f(M)). \]
Note also that \(\beta_{m-k+1}(M) = \beta_{k-1}(M) \) by Poincaré duality. Then, combining this with Corollary 1.2, we obtain the conclusion. This completes the proof. \(\square \)

Remark 2.4. Corollary 1.3 seems a little bit tedious. However, when \(N = \mathbb{R}^{m+k} \), it takes a simpler form as follows: a codimension- \(k \) \(C^1 \)-immersion with normal crossings \(f: M \to \mathbb{R}^{m+k} \) of a closed \(m \)-dimensional manifold \(M \) with vanishing \(k \)-th dual Stiefel-Whitney class \(\bar{w}_k(M) \) (\(\in H^k(M) \)) is an embedding if and only if \(\tilde{\beta}_{2k-2}(\mathbb{R}^{m+k} - f(M)) = \beta_{k-1}(M) \).

Remark 2.5. In [Hi], Hirsch has shown that, if \(f: M \to N \) is a codimension- \(k \) proper \(C^2 \)-immersion and \(H_k(N) = 0 \), then \(H_{k-1}(N - f(M)) \) is non-trivial. Using the techniques used in the proof of Theorem 1.1, we can prove a refinement of Hirsch’s result for immersions with normal crossings as follows. Let \(f: M \to N \) be a codimension- \(k \) \(C^1 \)-immersion with normal crossings, where \(M \) is a closed \(m \)-dimensional manifold, \(\dim H_{k-1}(N) \) is finite, and \(H_k(N) = 0 \). Then we have the following.

1. We always have
 \[\beta_{k-1}(N - f(M)) (= \beta_{k-1}(N) + \beta_m(f(M))) \geq \beta_{k-1}(N) + \beta_0(M). \]

2. When \(k = 1 \) and \(w_k(M) = 0 \), the equality holds in (1) if and only if \(f \) is an embedding.

3. When \(k \geq 2 \), the equality in (1) always holds.

Acknowledgment

The second author would like to express his sincere gratitude to ICMSC, University of São Paulo, for the hospitality during his stay in July–August, 1993.

References

DEPARTAMENTO DE MATEMÁTICA, ICMSC-USP, CAIXA POSTAL 668, 13560-970 SÃO CARLOS, SP, BRAZIL

E-mail address: biasi@ICMSC.USP.BR

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA 724, JAPAN

Current address: Departamento de Matemática, ICMSC-USP, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil

E-mail address: saeki@math.sci.hiroshima-u.ac.jp