Compacta with dense ambiguous loci of metric projections and antiprojections
HTML articles powered by AMS MathViewer
- by N. V. Zhivkov
- Proc. Amer. Math. Soc. 123 (1995), 3403-3411
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273531-0
- PDF | Request permission
Abstract:
In every strictly convexifiable Banach space X with $\dim X \geq 2$ there exists a dense ${G_\delta }$ set of compacta $\mathcal {A}$ in the Hausdorff set topology such that with respect to an arbitrary equivalent strictly convex norm in X both the metric projection and the metric antiprojection generated by any member of $\mathcal {A}$ are densely multivalued.References
- Edgar Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213–216. MR 206662, DOI 10.1007/BF02771633
- Jörg Slatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Pures Appl. 14 (1969), 615–621 (German). MR 251510
- F. S. De Blasi, P. S. Kenderov, and J. Myjak, Ambiguous loci of the metric projection onto compact starshaped sets in a Banach space, Monatsh. Math. 119 (1995), no. 1-2, 23–36. MR 1315681, DOI 10.1007/BF01292766
- F. S. De Blasi and J. Myjak, Ambiguous loci of the nearest point mapping in Banach spaces, Arch. Math. (Basel) 61 (1993), no. 4, 377–384. MR 1236316, DOI 10.1007/BF01201454
- F. S. De Blasi and J. Myjak, Ambiguous loci of the farthest distance mapping from compact convex sets, Studia Math. 112 (1995), no. 2, 99–107. MR 1311690, DOI 10.4064/sm-112-2-99-107 —, On compact connected sets in Banach spaces (to appear).
- Jonathan M. Borwein and Simon Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), no. 4, 702–720. MR 1012624, DOI 10.4153/CJM-1989-032-7 S.V. Konyagin, On approximation of closed sets in Banach spaces and the characterization of strongly convex spaces, Soviet Math. Dokl. 21 (1980), 418-422.
- Ka Sing Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), no. 2, 168–174. MR 394126, DOI 10.1007/BF02760164
- Ka Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), no. 5, 791–795. MR 510772, DOI 10.1512/iumj.1978.27.27051 D. Lubell, Proximity, Swiss cheese and offshore rights, preprint.
- Ivan Singer, Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl. 9 (1964), 167–177. MR 178450 S.B. Stechkin, Approximative properties of subsets of Banach spaces, Rev. Roumaine Math. Pures Appl. 8 (1963), 5-8.
- Tudor Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), no. 6, 563–566. MR 1052977, DOI 10.1007/BF01188685
- N. V. Zhivkov, Examples of plane compacta with dense ambiguous loci, C. R. Acad. Bulgare Sci. 46 (1993), no. 1, 27–30. MR 1264020
- N. V. Zhivkov, Peano continua generating densely multivalued metric projections, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 4, 335–346. MR 1345603
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3403-3411
- MSC: Primary 41A65; Secondary 46B20, 54E52
- DOI: https://doi.org/10.1090/S0002-9939-1995-1273531-0
- MathSciNet review: 1273531