The general local form of an analytic mapping into the set of idempotent elements of a Banach algebra
HTML articles powered by AMS MathViewer
- by J.-Ph. Labrousse
- Proc. Amer. Math. Soc. 123 (1995), 3467-3471
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277122-7
- PDF | Request permission
Abstract:
This paper gives a general formula which describes any analytical mapping of a suitably small open neighborhood U in $\mathbb {C}$ into the set of idempotent elements of any complex Banach algebra B and an application of this formula to the case when B is a Calkin algebra.References
- E. Catalan, Note sur une équation aux différences finies, J. Math. Pure Appl. 3 (1838), 508-517.
- Pierre de la Harpe (ed.), Algèbres d’opérateurs, Lecture Notes in Mathematics, vol. 725, Springer, Berlin, 1979 (French). Séminaire held at Les Plans-sur-Bex, 13–18 March 1978. MR 548109
- J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge University Press, Cambridge, 1992. MR 1207813
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3467-3471
- MSC: Primary 46H05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277122-7
- MathSciNet review: 1277122