Aperiodic tilings in higher dimensions
HTML articles powered by AMS MathViewer
- by Charles Radin
- Proc. Amer. Math. Soc. 123 (1995), 3543-3548
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277129-X
- PDF | Request permission
Abstract:
We show that in dimensions $d \geq 3$, aperiodic tilings can naturally avoid more symmetries than just translations.References
- Daniel Berend and Charles Radin, Are there chaotic tilings?, Comm. Math. Phys. 152 (1993), no. 2, 215–219. MR 1210166, DOI 10.1007/BF02098297
- Robert Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66 (1966), 72. MR 216954 N. G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane, Kon. Nederl. Akad. Wetensch. Proc. Ser. A 84 (1981), 39-66. L. Danzer, A single prototile, which tiles space, but neither periodically nor quasiperiodically, University of Dortmund, 1993, preprint. M. Gardner, Extraordinary nonperiodic tiling that enriches the theory of tiles, Sci. Amer. (1977), 116-119. B. Grünbaum and G. C. Shephard, Tilings and patterns, Freeman, New York, 1986.
- Dale Myers, Nonrecursive tilings of the plane. II, J. Symbolic Logic 39 (1974), 286–294. MR 363856, DOI 10.2307/2272641
- Martine Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156, DOI 10.1007/BFb0081890
- Charles Radin, Disordered ground states of classical lattice models, Rev. Math. Phys. 3 (1991), no. 2, 125–135. MR 1121466, DOI 10.1142/S0129055X91000059
- Charles Radin, Global order from local sources, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 335–364. MR 1094191, DOI 10.1090/S0273-0979-1991-16077-5
- Charles Radin, The pinwheel tilings of the plane, Ann. of Math. (2) 139 (1994), no. 3, 661–702. MR 1283873, DOI 10.2307/2118575
- Charles Radin, Space tilings and substitutions, Geom. Dedicata 55 (1995), no. 3, 257–264. MR 1334449, DOI 10.1007/BF01266317
- Charles Radin, Symmetry of tilings of the plane, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 213–217. MR 1215313, DOI 10.1090/S0273-0979-1993-00425-7
- Charles Radin and Mayhew Wolff, Space tilings and local isomorphism, Geom. Dedicata 42 (1992), no. 3, 355–360. MR 1164542, DOI 10.1007/BF02414073 P. Schmitt, An aperiodic prototile in space, University of Vienna, 1988, preprint. H. Wang, Proving theorems by pattern recognition II, Bell Systs. Tech. J. 40 (1961), 1-41.
- Hao Wang, Notes on a class of tiling problems, Fund. Math. 82 (1974/75), 295–305. MR 363854, DOI 10.4064/fm-82-4-295-305
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3543-3548
- MSC: Primary 52C22
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277129-X
- MathSciNet review: 1277129