On compact Kaehler submanifolds in $\textbf {C}\textrm {P}^ {n+p}$ with nonnegative sectional curvature
HTML articles powered by AMS MathViewer
- by Yi Bing Shen
- Proc. Amer. Math. Soc. 123 (1995), 3507-3512
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277132-X
- PDF | Request permission
Abstract:
A complete classification for nonnegatively curved compact Kaehler submanifolds ${M^n}$ in $\mathbb {C}{P^{n + p}}$ with $p < n$ is given, so that a conjecture of K. Ogiue is resolved partially.References
- Koichi Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math. 13 (1974), 73–114. MR 346719, DOI 10.1016/0001-8708(74)90066-8
- Antonio Ros, Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc. 93 (1985), no. 2, 329–331. MR 770547, DOI 10.1090/S0002-9939-1985-0770547-9
- Antonio Ros and Leopold Verstraelen, On a conjecture of K. Ogiue, J. Differential Geom. 19 (1984), no. 2, 561–566. MR 755238
- Antonio Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math. (2) 121 (1985), no. 2, 377–382. MR 786353, DOI 10.2307/1971178
- Jih Hsin Cheng, An integral formula on the scalar curvature of algebraic manifolds, Proc. Amer. Math. Soc. 81 (1981), no. 3, 451–454. MR 597661, DOI 10.1090/S0002-9939-1981-0597661-1
- Wei Ming Shang, On a conjecture of K. Ogiue for Kaehler hypersurfaces, Chinese Ann. Math. Ser. B 15 (1994), no. 1, 69–74. A Chinese summary appears in Chinese Ann. Math. Ser. A 15 (1994), no. 1, 124. MR 1270756
- Chong Zhen Ouyang and Zhen Qi Li, Locally symmetric Bochner-Kähler manifolds and their Kähler submanifolds, Chinese Ann. Math. Ser. A 11 (1990), no. 5, 547–552 (Chinese). MR 1092043
- Hisao Nakagawa and Ryoichi Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), no. 4, 638–667. MR 417463, DOI 10.2969/jmsj/02840638
- Masaru Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. (N.S.) 4 (1978), no. 1, 171–219. MR 528871, DOI 10.4099/math1924.4.171
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3507-3512
- MSC: Primary 53C40; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277132-X
- MathSciNet review: 1277132