Solution of the Baire order problem of Mauldin
HTML articles powered by AMS MathViewer
- by Marek Balcerzak and Dorota Rogowska
- Proc. Amer. Math. Soc. 123 (1995), 3413-3416
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283538-5
- PDF | Request permission
Abstract:
Let X be an uncountable Polish space, and let I be a proper $\sigma$-ideal of subsets of X such that $\{ x\} \in I$ for each $x \in X$. Denote by ${B_\alpha }(I),\alpha \leq {\omega _1}$, the Baire system generated by the family of functions $f:X \to \mathbb {R}$ continuous I almost everywhere. We prove that if $r(I) = \min \{ \alpha \leq {\omega _1}:{B_{\alpha + 1}}(I) = {B_\alpha }(I)\}$, then either $r(I) = 1$ or $r(I) = {\omega _1}$. This answers the problem raised by R. D. Mauldin in 1973.References
- Marek Balcerzak, A generalization of the theorem of Mauldin, Comment. Math. Univ. Carolin. 26 (1985), no. 2, 209–220. MR 803917
- Marek Balcerzak, Classification of $\sigma$-ideals, Math. Slovaca 37 (1987), no. 1, 63–70 (English, with Russian summary). MR 899018
- Marek Balcerzak, Can ideals without ccc be interesting?, Topology Appl. 55 (1994), no. 3, 251–260. MR 1259508, DOI 10.1016/0166-8641(94)90040-X
- A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. 89 (1995), no. 1-3, 343–356. MR 1324469, DOI 10.1007/BF02808208
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 K. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de première catégorie, Fund. Math. 5 (1924), 75-86. H. Lebesgue, Sur les fonctions représentable analytiquement, J. Math. (6) 1 (1905).
- R. Daniel Mauldin, $\sigma$-ideals and related Baire systems, Fund. Math. 71 (1971), no. 2, 171–177. MR 293027, DOI 10.4064/fm-71-2-171-177
- R. D. Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 41 (1973), 535–540. MR 323966, DOI 10.1090/S0002-9939-1973-0323966-0
- R. Daniel Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 51 (1975), 371–377. MR 372128, DOI 10.1090/S0002-9939-1975-0372128-1
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3413-3416
- MSC: Primary 54H05; Secondary 04A15, 26A21
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283538-5
- MathSciNet review: 1283538