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DIRECT COMPUTATION OF THE SPECTRAL FUNCTION
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(Communicated by Palle E. T. Jorgensen)

Abstract. We would like to find an explicit formula for the spectral function

of the following Sturm-Liouville problem:

\Lf=-£1f(x) + q(x)f{x),        x>0,

1 f(0) - m/(0) = 0.

A simple operational calculus argument will help us obtain an explicit formula

for the transmutation kernel. The expression of the spectral function is then

obtained through the nonlinear integral equation found in the Gelfand-Levitan

theory.

1. Introduction

Some forty years ago, Gelfand and Levitan, in a celebrated article [3] ob-

tained an integral equation that related the spectral function T(X) of the self-

adjoint operator

(Lf=~¿f(x) + q(x)f(x),       x>0,

\ f'(0) - mf(0) = 0

to the real function q(x) and m . The purpose of this note is not to expose

the work in [3] but to work out a method that gives the spectral function T(X)
explicitly in terms of the potential q(x), i.e. solve the direct spectral problem.

The importance of the spectral function lies in the fact that it contains all

information about the spectrum of the operator. Indeed, the decomposition of

the spectrum will correspond to the decomposition of the measure.

Recall that with each self adjoint operator is associated a unitary transform
by which the operator is transformed into a simple multiplication by the inde-

pendent variable. In our case this transform is represented by

^(0,00)^^(0,00)
/»OO

f^f(X)= /    f(x)yJxTJ)dx.
Jo
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The inverse transform is simply defined by f(x) = J f(X)y(x, X) dY(X) where

Y(X) is the spectral function and y(x, X) are solutions of

m f -y" + qy = ty,
[ ' \y(0,X) = 1   and   y'(0,X) = m,

i.e., eigenfunctionals of L. The theory of the inverse spectral problem is based
on the existence of two functions K(x, t), H(x, t) such that

j y(x, X) = cos(x\/I) - ¡o K(x, t) cos(tVX) dt   VA € R,

\ cos(xVl) = y(x, X) - J0X H(x, t)y(t, X) dt.

By a process of elimination one obtains the well-known linear integral equation

in K(x, t) and H(x, t) derived by Gelfand and Levitan. With the help of the
function H(x, t) one can express the spectral function (see [3]), through what
is called the nonlinear equation,

(3)   (cos(x\fX)cos(t\fX)do(X) = -H(x, t)-H(t,x)+ Í H(x, s)H(s, t)ds

where

a(X) ee I m - »^   {0TX-°>
{ '     I T(X) for A < 0.

In fact we can obtain a simpler and remarkable expression, if we assume that

T(A) is absolutely continuous with respect to d\[X (see [2])

n dY(X)

2 dVX

f 00

= 1-/    H(t,0)cos(ty/X)dt,        X > 0.
JO

Our first objective is to obtain an explicit formula for the function H(x, t)

which can be used in the above expression to obtain T(A). Recall that the

functions K(x, t) and H(x, t) axe defined in fact through partial differen-

tial equations of hyperbolic type, and this alone makes it impossible to obtain
H(x, t) explicitly. In this note we shall derive the function H(x, t) in a direct

and natural way. It remains to use the inverse cosine transform in (3) to recover

the expression of the spectral function T(A).

2. Explicit computation of H(x , t)

In this section we shall try to compute explicitly the kernel H(x, t) appearing

in equation (2). For the sake of simplicity we first deal with the case m = 0.

Equation ( 1 ) can be rewritten as an integral equation

(4) y(x, X) = costxvT) + t* sin((* ~ *)V5) . g{t)y{t ; X) dt
Jo yx

From this and equation (2) one obtains

(5) f H(x, t)y(t ,X)dt = f Sin((^0v/X) • q(t)y(t, A) dt.

It is readily seen that in order to recover the function H(x, t) we need to write

the right-hand side of (5) as a y-transform. Hence our first objective is to get
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rid of the A appearing in sinU*-'K¿) by converting it to an operator. Observe

that since the kernel is an entire function,

sin((x-t)VX) = Vr        (x-t)2"+l

VA -jLf   U    (2/1+1)!      '

the uniform convergence in [0, x] implies

rx rx (x - t\2"+l

(6) /  H(x,t)y(t,X)dt = J2       n„lu, (-l)"<?(0A"y(f, X)dt.
Jo ^qJo    (2« + i)!

For simplicitly we shall agree to write

d2 (x - t)2n+l
STm-jp + q«)   and   ^-0itXp,;i)|(-lîJ.

Recall in this case 3"ly(x, X) = Xny(x, X) holds in the classical sense and

therefore (6) yields

(7) f H(x,t)y(t,X)dt = Y [*an(x-t)q(t)^"y(t,X)dt.
Jo n>0Jo

To simplify the integration by parts, let us assume that

q(t)£W°°[0,oo)       and       q{k)(0) = 0   VÂ: > 0.

Clearly for n> m

<\2n+l

X2n + \ypiy

--Y,Cß,r,sQ{t)ßq(t)(r)(x-t)

5?man(x-t)q(t)=[q(t)
(*>-£)'

lx-i}     m

where 2n > r, ß > 1, and s > 1. Thus the contribution of the boundary
condition at t = 0 and t = x is zero since q^(0) = 0, k > 0, and s > 1. For

each fixed x, obviously jjxz(x - i)(2"+1) is continuous at t = x . Consequently

[q(t) - 2%\n(x - t){2n+l)q(t) is also continuous in [0, jc] .

From (7) we deduce that

(8) f H(x, t)y(t, X)dt = T f >"M* - t)q(t)]y(t, X)dt.
Jo n>0Jo

Remark. From the Gelfand-Levitan theory, H(x, •) £ W°°[0, x] and so the

left-hand side is L^rw . This means that, for each fixed x, the series on the

right converges in L2dT,x, and obviously the partial sums also belong to L2dV,x,,

in other words,

B-1)**Vo (2kl\)\q{t)y{t>X)dt^Lwy

The next Lemma will help us interchange the series with the integral in (8).
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Lemma.  Yj£o-&k\ak(x - t)q(t)] = ^fn+la„(x - t).

Proof. It is readily seen that

Hence

k=n k=n

J2^k[ak(x - t)q(t)] = Oq(x - t)q(t) + £j?fc+1ûit(* - 0 -&\ak.x(x - t)]
k=0 k=\

= a0(x - t)q(t) + 5?n+la„(x - t) - 5?[a0(x - t)]

= S?n+xan(x-t).

Hence the Lemma is proved and as a consequence

(9)      ¿ [XJ?k[ak(x-t)q(t)]y(t,X)dt= f ^n+l[an(x - t)]y(t, X)dt.
kToJo Jo

Since the partial sum converges in Ldrw , we have

/ 5rn+l[an(x-t)]y(t,X)dtL-^ [ H(x, t)y(t, X)dt   as n - oo.
Jo Jo

Using the inverse y-transform, which is a unitary transform, we deduce

Vjc,    5fn+l[a„(x - t)] Ll"^x) H(x,t)   asn^oo.

Thus we have proved

Proposition 1. Let q(t) £ ^°°, q^(0) = 0 V« > 0, Vx > 0 and 0 <t <x;
then

H(x, t) = lim
d2      ^"+1 í(-ir(x-t)2»+i\      2

l       (2« + l)!       J    inLd¿0>x)-dt2 + q(t)_

Remark. In other words, since H(x, t) is the kernel of a transmutation, we

have

cos(xva) = y(x, X) - lim [ [-g + q(t)\ "+* {("1 j^f " } y(t, X) dt.

The above expression is the key to our problem. Indeed as mentioned before

we do not need to solve a partial differential equation in order to find H(x, t).

We can also repeat a similar argument to obtain the function K(x, t).

3. The spectral function

Now we are in a position to find the spectral function just by using the

nonlinear equation (3) which can also be obtained as a particular case from [1].

Proposition 2. Let q(x) £ W°° and q^(0) = 0, and T(X2) be differentiable
and supp dT(X) c [0, oo). Then

n dT(X) _

2 dVX

/•OO

= 1- /    H(t,0)cos(tv/X)dt
Jo
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where

H(x, t) = lim
dt2

-, 71+1

+ 0(0
í(-l)"(x-¿)2"+1l

I       (2/1 + 1)!       J

Proo/. From the assumptions that T(X2) is differentiable and supp¿7T(A) c

[0, oo), (3) can be written as

'ndT(X)

(10)

/ cos(xVX) cos(tVX) . -l]d-VX
.2 dVX       \   n

= -H(x,t)-H(t,x)+ [ H(x, s)H(s, t)
Jo

ds.

By taking the inverse cosine transform, it follows that for each x, in the space

n dr

7-2

2¿vT
(A) - 1   cos(xVk)

+

px poo

/   H(x,t)cos(tvrX)dt-       H(t,x)cos(t\/X)dt
Jo Jx

px poo

/   H(x,t) I    H(n,t)cos(n\/X)dndt.

By letting x —» 0 we obtain the proposition.

Remark. The connection between the spectral function and the kernel H(x, t)
is a standard result (see [2]). However the assumption on the spectral function

simplifies the proof.

4. General boundary condition

We now consider the general boundary condition, i.e. L is a selfadjoint
extension defined by

ÍLf=-d¿ + q(x)f,

\f(0)-mf(0) = 0,        m£R,

where m ^ 0. The eigenfunctionals in this case are defined by

f -y"(x, X) + q(x)y(x, X) = Xy(x, X),

\y(0,A) = l   and   y'(0,A) = m;

and the solution of the above equation can be written as

,,,,      , ,    /t,        sin(x\/Ä)      [x sin((x - t)\/~X)      ...    ...
(11)   y(x, X) = cos(xVX) + m—^p-^ + /   —vv       '—'- • q(t)y(t, X)dt.

vA Jo vA

Under conditions of Proposition 1, we can also integrate by parts to obtain

y(t, X) = cos(xVX)+m
sin(xVÄ)

- T lim ̂ "+1 {
Jo n^°° I

+ /    lim £fn+x
yfl       Jo

(x-t)2n+l(-iy

(2/1 + 1)!

If we denote by L2<m the selfadjoint extension defined by

L2,mf=-f"(x),       x>0,

/'(0)-m/(0) = 0,

}y(t, X)dt.
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if m >0
dT2 y3

dX
= J   n(X+m2) '

"\o,
and

if m < 0
</r-2,77i _   I    ^(A+rn2) '

A>0,

A<0,

A>0.

dA        { -2mS(X + w2),    A<0,

By using the factorization theorem (see [ 1 ]), and repeating the proof of Propo-

sition 2, we end up with

2,771 JOdY

/•OO

(A) = l-/    H(t,0)
Jo

cos(rVÄ) + m
sin(tVX)~7T~ dt   for A > 0.

Proposition 3. Let q(t) £ W°° a«ri 0(/I'(O) = 0 V« > 0, and let T(X) be abso-
lutely continuous with respect to dr2>m(X). Then

sffi'^'-f (MS(tVI) +m
m(tVX)\

VX    )
H(t,0)dt

where

d2
H(x,t) = Jim   —^ + q(t)

71+1

I       (2«
(i-x) 271+1

+ 1)!
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