ANALYTIC ULTRADISTRIBUTIONS

B. STANKOVIC

(Communicated by Palle E. T. Jorgensen)

Abstract. A necessary and sufficient condition that an ultradistribution, of Beurling or Roumieu type, which is defined on an open set \(\Omega \subset \mathbb{R}^n \) is a real analytic function is given. This result is applied to different problems.

1. Introduction

It is of interest to know whether a generalized function \(T \) or its restriction to an open set is defined by a real analytic function, especially if this generalized function is a solution of an equation. One can find answers for different classes of generalized functions in [2], [3] and [5]. An answer on this question for distributions was made by L. Schwartz (see [8, Chapter VI, Theorem XXIV]). Our aim is to extend this result to ultradistributions. The key of the proof of the mentioned theorem in [8] was in the parametrix. Therefore we cannot proceed analogously to answer this question for ultradistributions. In our proof we use an assertion which can be found in Komatsu [4] and applied also by Pilipović [7]. We cite this assertion as Theorem A.

As an illustration of applications of Theorem 1 we give two direct consequences and two theorems concerning convolution equations and Painlevé’s theorem.

2. Notation

We follow the notation of [6]. Let us repeat some.

By \(M_p \) we denote a sequence of positive numbers satisfying some of the following conditions: \(M_0 = M_1 = 1 \) and

\[
\begin{align*}
M_p^2 & \leq M_{p-1}M_{p+1}, \ p \in \mathcal{N}; \\
M_p/(M_qM_{p-q}) & \leq AB^p, \ 0 \leq q \leq p, \ p, \ q \in \mathcal{N}; \\
\sum_{q=p+1}^\infty M_{q-1}/M_q & \leq ApM_p/M_{p+1}, \ p \in \mathcal{N},
\end{align*}
\]

where \(A \) and \(B \) are constants independent on \(p \).

We use two classes of ultradifferentiable functions, the Beurling class and Reumieu class (in short, \((M_p) \) class and \(\{M_p\} \) class).

Let \(u \) be a positive number and \(\{u_p\} \) be a sequence of positive numbers...
increasing to ∞. We denote

\begin{equation}
H_p = \begin{cases}
u^p, & \text{for the class } (M_p) \\ u_1 \cdots u_p, & \text{for the class } \{M_p\} \end{cases}.
\end{equation}

Let Ω be an open set in \mathbb{R}^n.

By $\mathcal{D}^{H_p}_{K}$ is denoted the Banach space of all $f \in \mathcal{C}^\infty(\mathbb{R}^n)$ with support in K such that

$$\sup_{x \in K} |f^{(p)}(x)|/H_p \to 0 \quad \text{as } p \to \infty$$

with the norm

\begin{equation}
q_{H_p,M_p}(f) = \sup_{x \in K, p \in \mathcal{M}^n_0} |f^{(p)}(x)|/H_p M_p,
\end{equation}

where K is a compact set in \mathbb{R}^n. Then the basic spaces are

$$\mathcal{D}^{(M_p)}_{K} = \text{proj lim } \mathcal{D}^{H_p}_{K}, \quad \mathcal{D}^{\{M_p\}}_{K} = \text{proj lim } H_p^{H_p}_{K}$$

and

$$\mathcal{D}^*(\Omega) = \text{ind lim } \mathcal{D}^*_K,$$

where $*$ denotes either (M_p) or $\{M_p\}$.

An operator of the form

$$P(D) = \sum_{|i| \geq 0} a_i D^i, \quad a_i \in \mathbb{C},$$

is called the ultradifferential operator of class (M_p) (of class $\{M_p\}$) if there are constants L and C (for every $L > 0$ there is a constant C) such that

$$|a_i| \leq CL^{|i|}/M_i, \quad i \in \mathcal{M}^n_0.$$

$A(\Omega)$ is the space of real analytic functions.

$B_r = B(0, r)$ is the open ball with center at zero and with radius r.

Theorem A (see [4, Theorem 2.11]). Let the sequence M_p satisfy conditions $(M.1)$, $(M.2)$ and $(M.3)$. For a given H_p from (1) and a compact neighbourhood Q of zero in \mathbb{R}^n there exist an ultradifferential operator $P(D)$ of class \ast and two functions $\varphi \in \mathcal{C}^\infty$ and $w \in D^*_Q$ such that

$$P(D)\varphi = \delta + w, \quad \sup \varphi \subset Q$$

and

$$\sup_{x \in Q} |\varphi^{(i)}(x)|/H_i M_i \to 0, \quad |i| \to \infty.$$

3. **Main result**

Theorem 1. Suppose that M_p satisfies $(M.1)$, $(M.2)$ and $(M.3)$ and that Ω, Ω_1 are two open sets in \mathbb{R}^n such that $\Omega = \Omega_1 - B_r$ for some $r > 0$. An ultradistribution $T \in \mathcal{D}'(\Omega)$ is defined by the real analytic function f, $f \in \mathcal{S}(\Omega)$, if and only if $T \ast w \in \mathcal{S}(\Omega_1)$ for every $w \in \mathcal{D}^*_K$, where $K = B_r$ and \ast is the sign of convolution.

Proof. If $T = f \in \mathcal{A}(\Omega)$, then it can be characterized as an infinitely differentiable function such that for every compact set $K' \subset \Omega$ and $p \in \mathcal{M}_0^n$ there exist two constants $C_{K'}$ and C for which

$$\sup_{x \in K'} |f^{(p)}(x)| \leq Cp!C_{K'}^{|p|}, \quad p \in \mathcal{M}_0^n.$$
Take any compact set $K'' \subset \Omega_1$. Then
\[
\sup_{x \in K''} |(f * w)^{(p)}(x)| \leq C_p C_{K''}^{[p]} \int_{\mathbb{R}^n} |w(x)| \, dx, \quad p \in \mathcal{N}_0^n,
\]
which proves that $f * w \in \mathcal{A}(\Omega_1)$.

Suppose now that for $T \in \mathcal{D}'(\Omega)$ and for every $w \in \mathcal{D}_K^*$, $T * w \in \mathcal{A}(\Omega_1)$ and A is an open and relatively compact set, $A \subset \Omega \subset \Omega_1$. In the first step of the proof we shall analyse the functional R,
\[
R: (w, q) \mapsto \sup_{x \in A} |(f * w)^{(q)}(x)|/q!, \quad w \in \mathcal{D}_K^*, \; q \in \mathcal{N}^n,
\]
which is related to the convergence radii of the power series
\[
\sum_{|q| \geq 0} (f * w)^{(q)}(x)(x - y)^q/q!, \quad x \in A.
\]

For a fixed $q \in \mathcal{N}^n$, R is continuous in $w \in \mathcal{D}_K^*$, and for a fixed $w \in \mathcal{D}_K^*$, R is bounded in $q \in \mathcal{N}^n$. Since \mathcal{D}_K^* is a barreled space, by the Banach theorem it follows that the family $\{R(\cdot, q), q \in \mathcal{N}^n\}$ is equicontinuous. Then for a fixed $L > 0$ there exist $\beta > 0$ and H_p such that $R(w, q) < L$ when $w \in V_\beta$ and $q \in \mathcal{N}^n$, where V_β is the neighbourhood of zero in \mathcal{D}_K^* of the form
\[
V_\beta = \left\{ \phi \in \mathcal{D}_K^*: \sup_{x \in \mathbb{R}^n, p \in \mathcal{N}_0^p} |\phi^{(p)}(x)|/H_p M_p < \beta \right\}.
\]

From the properties of the functional R it follows that the family of functions
\[
F_q: w \mapsto (T * w)^{(q)}/q! L^{q|q|} = (D^q T * w)/q! L^{q|q|}, \quad q \in \mathcal{N}_0^n,
\]
is equicontinuous; F_q maps \mathcal{D}_K^* into $(\mathcal{B})_A$. $(\mathcal{B})_A$ is the space of continuous and bounded functions on A. Also, for every $w \in V_\beta$ and for every $q \in \mathcal{N}_0^n$, $(T * w)^{(q)}/q! L^{q|q|}$ belongs to the ball $B(0, L) \subset (\mathcal{B})_A$. Namely, there exists $C > 0$ such that
\[
|(T * w)^{(q)}(x)| \leq C q! L^{q|q|}, \quad x \in \overline{A}, \; w \in V_\beta.
\]

Denote by $\mathcal{D}_K^{H_p M_p}$ the completion of \mathcal{D}_K^* under the norm $q_{H_p M_p}$ given by (2), where H_p is fixed by V_β. In the second part of the proof we shall show that the family $\{F_q: q \in \mathcal{N}_0^n\}$ can be extended by \mathcal{D}_K^* to $\mathcal{D}_K^{H_p M_p}$, keeping uniform continuity; let us denote this extension by $\{\overline{F_q}: q \in \mathcal{N}_0^n\}$.

For this purpose we use the theorem on the extension of a function by continuity (see [1, Chapter I, §8.5]). Let $w_0 \in \mathcal{D}_K^{H_p M_p}$ and let $\{w_j\} \subset \mathcal{D}_K^*$ be the sequence which converges to w_0 in $\mathcal{D}_K^{H_p M_p}$. We shall prove that $F_q(w_j)$ converges in $(\mathcal{B})_A$ when $j \to \infty$, uniformly in $q \in \mathcal{N}_0^n$. To do this we shall show that $\{F_q(w_j), j \in \mathcal{N}_0^n\}$ is a Cauchy sequence in $(\mathcal{B})_A$, uniform in $q \in \mathcal{N}_0^n$.

Let W be a neighbourhood of zero in $(\mathcal{B})_A$. Then it contains the ball $B(0, L) \subset (\mathcal{B})_A$ for some $L > 0$. Consequently, $F_q(V_\beta) \subset W, q \in \mathcal{N}_0^n$, where V_β is given by (3). Let j_0 be such that $w_i - w_j \in V_\beta, i, j \geq j_0$. Then
\[
F_q(w_i) - F_q(w_j) = F_q(w_i - w_j) \in W, \quad i, j \geq j_0, q \in \mathcal{N}_0^n,
\]
and \(F_q(w_j) \) converges to \(h_q \) in \((\mathcal{EB})_A\), when \(j \to \infty \), uniformly in \(q \in \mathcal{N}_0^n \).

By the cited extension theorem it follows that \(F_q(w) = h_q \in (\mathcal{EB})_A, \ q \in \mathcal{N}_0^n \); every \(F_q, \ q \in \mathcal{N}_0^n \), is uniquely defined.

We shall prove that

\[
\begin{align*}
\text{for } q \in \mathcal{N}_0^n: \\
 h_q = D^q(T * \tilde{w})/q! L^{[q]} = (D^q T * \tilde{w})/q! L^{[q]},
\end{align*}
\]

The sequence \(\{w_j\} \) converges to \(\tilde{w} \) in \(\mathcal{E}'_B^* \), as well. Therefore \((T * w_j)^{(q)} = D^q T * w_j \) converges to \(D^q T * \tilde{w} \) in \(\mathcal{D}'_A^* \), when \(j \to \infty, \ q \in \mathcal{N}_0^n \) (see [6, Theorem 6.12]). Thus \((D^q T * \tilde{w})/q! L^{[q]} \) must be \(h_q, q \in \mathcal{N}_0^n \). Since the derivative is a continuous mapping of \(\mathcal{D}'_A^* \) into \(\mathcal{D}'_A^* \), it follows that \(h_q = D^q(T * \tilde{w})/q! L^{[q]} \), as well. Consequently, \(T * \tilde{w} \in \mathcal{A}(\Omega_1) \).

In the third step of the proof it remains only to use Theorem A. Let us remark that if \(\varphi \in C^\infty \) has support in the compact set \(Q \subset K \) and \(qH_p, q \in \mathcal{N}_0^n \), then \(\varphi \in \mathcal{D}'_K H_p \). We also know that \(\mathcal{A}(\omega) \subset \mathcal{E}'(\omega) \) and that \(P(D) \mathcal{E}'(\omega) \subset \mathcal{E}'(\omega) \) for any open set \(\omega \subset \mathcal{R}^n \). According to the above remark we deduce from Theorem A that

\[
D^q T/q! L^{[q]} = P(D)(\varphi * D^q T)/q! L^{[q]} + w * D^q T \quad \text{on } \Omega, \ q \in \mathcal{N}_0^n.
\]

Therefore \(T \in \mathcal{A}(\Omega) \).

4. Applications of Theorem 1

Direct consequences of Theorem 1 are:

1. Lemma 2.4 in [4] we know the analytic form of the operator \(P(D) \) and of the functions \(\varphi \) and \(w \) given in Theorem A. With these \(P(D), \ \varphi \) and \(w \), Theorem 1 asserts that the equation \((P(D)X)(x) + (w * f)(x) = f(x), \quad x \in \Omega \), has a solution \(X = (\varphi * f) \in \mathcal{A}(\Omega) \) for any \(f \in \mathcal{A}(\Omega) \).

2. Denote by \(\delta_h \) the distribution \(\delta \) shifted in the point \(h \). The function \(H: h \to \delta_h * T \) maps \(\mathcal{R}^n \) into \(\mathcal{D}'(\mathcal{R}^n) \) and has all derivatives. Theorem 1 asserts that \(H \) is real analytic if and only if \(T \) is defined by a real analytic function. The property that \(H \) is real analytic means that the set \(\{D^q(\delta_h * T)/q! L^{[q]}, \ q \in \mathcal{N}_0^n, \ h \in K \} \) is bounded in \(D'(\mathcal{R}^n) \) for every compact set \(K \subset \mathcal{R}^n \) and an \(L > 0 \) which depends on \(K \), namely that

\[
\sup_{h \in K, \ q \in \mathcal{N}_0^n} |D^q(T * w)(h)|/q! L^{[q]} < C \quad \text{for every } w \in \mathcal{D}'(\mathcal{R}^n)
\]

where \(C > 0 \) depends on \(K \) and \(w \in \mathcal{D}'(\mathcal{R}^n) \).

Application of Theorem 1 to convolution equations. Let

\[
A * T = \sum_{k=1}^m A_{j,k} * T_k, \quad j = 1, \ldots, m,
\]

where \(A = (A_{j,k}) \) is a given \((m \times m)\)-matrix of elements belonging to \(\mathcal{E}'(\mathcal{R}^n) \) and \(T \) is an \(m \)-tuple \(\{T_1, \ldots, T_m\} \) of unknown ultradistributions.

Theorem 2. Suppose that the system \(T * A = 0 \) has the following property: Any solution which belongs to \((\mathcal{E}'(\Omega_1))^m \) belongs to \((\mathcal{A}(\Omega_1))^m \) as well. Then for
every \(m \)-tuple \(U \) of ultradistributions which is a solution of the system \(T \ast A = 0 \) there exists \(r > 0 \) such that \(U \in (\mathcal{A}(\Omega))^m, \Omega = \Omega_1 - B_r \).

Proof. For the sake of simplicity we shall prove Theorem 2 only in case \(m = 1 \). Suppose that \(U \in \mathcal{D}^*(\Omega) \) is a solution to equation \(T \ast A = 0 \). Then \(U \ast w \in \mathcal{E}^*(\Omega_1) \) for every \(w \in \mathcal{D}^*(B_r) \) satisfies equation \(T \ast A = 0 \) as well, because of properties of the convolution. Since \(U \ast w \in \mathcal{E}^*(\Omega_1) \), by the supposition in Theorem 2, \(U \ast w \) belongs to \(\mathcal{A}(\Omega_1) \). Theorem 1 asserts that \(U \in \mathcal{A}(\Omega) \). This is the end of the proof.

Application of Theorem 1 to Painlevé's theorem. Let \(V \) be an open set in \(\mathcal{E} \) and \(\Omega = V \cap \mathcal{R} \). Classical Painlevé's theorem asserts that a function \(f \) holomorphic on \(V \setminus \Omega \) and continuous on \(V \) is holomorphic on the whole set \(V \). It is well known that the continuity can be replaced by the existence and equality of the limits \(\lim_{y \to 0^+} f(x \pm iy) \) in \(\mathcal{D}'(\Omega) \). Theorem 1 admits to weaken this condition, supposing that the above limits exist in \(\mathcal{D}^*(\Omega) \).

Theorem 3. Let \(f \) be a holomorphic function on \(V \setminus \Omega \). If the limits \(f(x \pm i0) = \lim_{y \to 0^+} f(x \pm iy) \) exist in \(\mathcal{D}^*(\Omega) \) and \(f(x + i0) = f(x - i0) \), then \(f \) is holomorphic on \(V \).

Proof. The method of the proof is just the same as for distributions. First we have to apply classical Painlevé's theorem to the convolution \(f \ast w, w \in \mathcal{D}_K^* \), and then use Theorem 1.

References

Institute of Mathematics, University of Novi Sad, 21000 Novi Sad, Yugoslavia